

AB Allen-Bradley

Ultra5000 Intelligent Positioning Drives

(Catalog Numbers 2098-IPD-005, -005-DN 2098-IPD-010, -010-DN 2098-IPD-020, -020-DN 2098-IPD-030, -030-DN, -HV03O, -HV030-DN 2098-IPD-HV050, -HV050-DN 2098-IPD-075, -075-DN, 2098-IPD-HV100, -HV100-DN 2098-IPD-150, -150-DN, -HV150, -HV150-DN 2098-IPD-HV220,-HV22O-DN

Installation Manual

Rockwell Automation

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley ${ }^{\circledR}$ does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or part, without written permission of Rockwell Automation, is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

Attention statements help you to:

- identify a hazard
- avoid a hazard
- recognize the consequences

Identifies information that is critical for successful application and understanding of the product.
Preface Introduction P-1
Who Should Use this Manual P-1
Purpose of this Manual P-1
Contents of this Manual P-2
Related Documentation P-3
Conventions Used in this Manual P-4
Product Receiving and Storage Responsibility P-4
Allen-Bradley Support P-5
Local Product Support P-5
Technical Product Assistance P-5
Comments Regarding this Manual P-5
Chapter 1
Installing Your Ultra5000Chapter Objectives1-1
Complying with European Union Directives 1-1
EMC Directive 1-2
Low Voltage Directive. 1-2
Before Mounting Your System 1-3
How to Store Your Ultra5000 Before Installation 1-3
How to Unpack the System. 1-4
Minimum Mounting Requirements 1-5
Ventilation Requirements 1-6
Sizing an Enclosure 1-7
Transformer Sizing 1-7
Calculating Transformer Size Based on Speed/Torque Data 1-7
Fuse Sizing 1-9
Bonding Your System 1-10
Bonding Modules 1-10
Bonding Multiple Subpanels 1-11
Mounting Your Ultra5000 Drive 1-12
Chapter 2
Chapter Objectives 2-1
Understanding Ultra5000 Controller Functions 2-2
Ultra5000 Block Diagram 2-2
Understanding Ultra5000 Connectors 2-3
230V Ultra5000 Front Panel Connections 2-4
$500 \mathrm{~W}, 1 \mathrm{~kW}$, and 2 kW Ultra 5000 (2098-IPD-005, -010, and -020) 2-4
I/O Connectors 2-5
Motor Encoder Connector 2-6
Serial Port Connectors 2-7
Terminal Block 2-7
3 kW Ultra5000
(2098-IPD-030) 2-8
Terminal Blocks 2-9
7.5 kW , and 15 kW Ultra5000
(2098-IPD-075, and -150) 2-10
I/O Connectors 2-11
Motor Encoder Connector 2-11
Serial Port Connectors 2-11
Terminal Blocks 2-11
230V Ultra5000 with DeviceNet Front Panel Connections
2-13
500W, 1 kW , and 2 kW Ultra 5000 with DeviceNet (2098-IPD-005-DN, -010-DN, and -020-DN) 2-13
I/O Connectors 2-14
Motor Encoder Connector 2-14
Serial Port Connectors 2-14
DeviceNet Connector. 2-14
$3 \mathrm{~kW}, 7.5 \mathrm{~kW}$, and 15 kW Ultra 5000 (2098-IPD-005-DN, -010-DN, and -020-DN) 2-15
460V Ultra5000 Front Panel Connections 2-16
I/O Connectors 2-17
Motor Encoder Connector 2-17
Serial Port Connectors 2-17
Terminal Blocks. 2-17
Understanding Ultra5000 I/O Specifications 2-19
Digital I/O Power Supply 2-19
Digital Inputs 2-20
Digital Outputs 2-22
Analog Inputs 2-23
Analog Outputs 2-24
Understanding Motor Encoder Feedback Specifications 2-25
AM, BM, and IM Inputs 2-25
Hall Inputs 2-27
Thermostat Input 2-27

+ Limit and - Limit Inputs 2-28
Encoder Phasing 2-29
Motor Encoder Connection Diagram 2-31
Unbuffered Motor Encoder Outputs 2-31
Buffered Motor Encoder Outputs 2-31
Understanding Auxiliary Encoder Feedback Specifications 2-32
Auxiliary Encoder Interface 2-32
Understanding the Serial Interface. 2-34
Default Serial Interface Settings 2-34
Chapter 3
Connecting Your Ultra5000 Chapter Objectives 3-1
Powering the Digital I/O 3-1
Accessing the Internal Digital I/O Power Supply 3-2
Understanding Basic Wiring Requirements 3-4
Building Your Own Cables 3-4
Routing High and Low Voltage Cables 3-5
Grounding Your Ultra5000 3-6
Grounding Your System to the Subpanel 3-6
Grounding Multiple Subpanels 3-7
Motor Power Cable Shield Termination 3-7
Wiring Your Ultra5000 3-9
Connecting Interface Cables 3-9
Wiring I/O Connections 3-9
Connecting to a DeviceNet Network 3-10
Connecting Your DeviceNet Cable 3-11
Assigning Your Ultra5000 DeviceNet Address 3-12
Wiring Power Connections 3-14
Chapter 4
Commissioning Your Ultra5000 Chapter Objectives 4-1
General Startup Precautions 4-1
Understanding Communication Switch Settings 4-2
Applying Power To Your System 4-3
Configuring Your Ultra5000 4-5
Chapter 5
Maintaining Your Ultra5000 Chapter Objectives. 5-1
Maintaining the Drive 5-1
Periodic Maintenance 5-1
Cleaning the Drive 5-1
Inspecting the Cables 5-2
General Troubleshooting 5-2
Error Codes 5-2
Troubleshooting for DeviceNet Drives 5-6
DeviceNet Module Status LED 5-6
DeviceNet Network Status LED 5-7
Node Problems. 5-8
Device Failure - LED Status Check. 5-8
Scanner Problems 5-9
Power Supply Problems 5-9
Cable Installation and Design Problems 5-10
Adjusting the Physical Network Configuration 5-10

Specifications and Dimensions

Appendix A

Objectives . A-1
Ultra5000 Specifications . A-1
General Power Specifications A-1
2098-IPD-005- $x x$, -010- $x x$, and -020- $x x$. A-1 2098-IPD-030- $x x$, -075- $x x$, and -150-xx A-2 2098-IPD-HV030-xx, -HV050-xx, -HV100-xx, -HV150-xx, and -HV220-xx. $A-3$
Physical and Environmental. A-4
Power Dissipation. A-5
User Programming . A-6
Control. A-6
Inputs and Outputs . A-7
Communications . A-7
Motor Feedback . A-8
Auxiliary Feedback . A-8
Connectors . A-8
Dimensions . A-9

Appendix B

Interconnect Diagrams

Objectives . B-1
Ultra5000 and Motor Cable Diagrams B-1
Ultra5000 Drive and Motor Cable Combinations B-1
Ultra5000 to Motor Interconnect Diagrams B-3
Ultra5000 Power Wiring Diagrams B-15
Using an Emergency Stop Contactor B-20
Grounding for Ultra5000 CE Requirements B-22
Ultra5000 Shunt Module Information. B-23
300 Watt Active Shunt Module. B-23
200 Watt Passive Shunt Module B-23
900 Watt Passive Shunt Module B-24
2090 Passive Shunt Module . B-24
Appendix C
Catalog Numbers and Chapter Objectives C-1
Accessories Ultra5000 Drives C-2
Ultraware Software C-2
AC Line Filters C-3
External Shunt Kits C-4
300 Watt Active Shunt Ferrites C-5
2090 Series Passive Shunts C-5
Cables C-6
Motor Power Cables C-6
Motor Feedback Cables C-7
MP-Series Motor Brake Cable C-8
Ultra5000 Interface Cables C-8
Break Out Boards, Cables, and Kits C-8
Mating Connector Kits C-9
Appendix D
Wiring Three Phase Power to aObjectivesD-1
Single Phase Ultra5000
Single Phase Ultra5000 Applicable Drives D-1
Mandatory Neutral Connection of Isolation Transformer D-2
Adding a Safety Ground to the Isolation Transformer D-3
Three Phase Line Filtering Requirements for EMC D-3
Voiding of CE Compliance D-4

Preface

Introduction

Who Should Use this
 Manual

Read this preface to familiarize yourself with the rest of the manual. This preface contains the following topics:

- Who Should Use this Manual
- Purpose of this Manual
- Contents of this Manual
- Related Documentation
- Conventions Used in this Manual
- Product Receiving and Storage Responsibility
- Allen-Bradley Support

Use this manual for designing, installing, programming, and troubleshooting the Ultra5000 ${ }^{\mathrm{TM}}$ Intelligent Positioning Drive (IPD). If you do not have a basic understanding of the Ultra5000, contact your local Allen-Bradley representative for information on available training courses before using this product.

This manual describes the function and installation of the Ultra5000 products and standard Rockwell Automation/Allen-Bradley motors recommended for use with the Ultra5000. The manual is intended for engineers or technicians directly involved in the installation, operation, and field maintenance of the Ultra5000.

Contents of this Manual

Chapter	Title	Contents
	Preface	Describes the purpose, background, and scope of this manual. Also specifies the audience for whom this manual is intended.
1	Installing Your Ultra5000 Information	Provides mounting information for the Ultra5000.
2	Connecting Your Ultra5000	Provides connection and wiring information for the Ultra5000.
3	Provides steps to follow when applying power to the Ultra5000 for the first time.	
4	Ultra5000	

Related Documentation

The following documents contain additional information concerning related Allen-Bradley products. To obtain a copy, contact your local Rockwell Automation office or distributor, or access the documents on-line at www.theautomationbookstore.com or www.ab.com/manuals/gmc.

For:	Read This Document:	Catalog Number:
Active shunt installation instructions for: - 2098-IPD-005, -005-DN - 2098-IPD-010, -010-DN - 2098-IPD-020, -020-DN	300 Watt Active Shunt Regulator Installation Instructions	2090-IN001
Passive shunt installation instructions for: - 2098-IPD-075, -075-DN - 2098-IPD-150, -150-DN	900 Watt Passive Shunt Module Installation Instructions	2090-IN002
Passive shunt installation instructions for: - 2098-IPD-030, -030-DN	200 Watt Passive Shunt Module Installation Instructions	2090-IN003
Passive shunt installation instructions for: - 2098-IPD-HV030, -HV030-DN - 2098-IPD-HV050, -HV050-DN - 2098-IPD-HV100, -HV100-DN - 2098-IPD-HV150, -HV150-DN - 2098-IPD-HV220, -HV220-DN	2090 Series Passive Shunts Installation Instructions	2090-IN004
Ultraware ${ }^{\text {TM }}$ installation instructions	Ultraware CD Installation Instructions	2098-IN002
Information on how to add a DeviceNet ${ }^{\text {TM }}$ Expansion Kit to a Ultra5000 drive	Ultra5000 DeviceNet Expansion Kit Installation Instructions	2098-IN004
Information on programming the Ultra5000 using the Motion Library	Ultra5000 Motion Library C Programming Manual	2098-PM001
Information on communicating with the Ultra5000 using DeviceNet	Ultra5000 DeviceNet Reference Manual	2098-RM002
Information on configuring your Ultra5000 using Ultraware	Ultraware User Manual	2098-UM001
How to minimize and control system-level noise	System Design for Control of Electrical Noise	GMC-RM001
Information on attaching Ultra5000 drives to a DeviceNet network	DeviceNet Cable System Planning and Installation Manual	DNET-UM072

A copy of the DeviceNet Specification, Volumes I and II, Release 2.0 may be ordered from the web site http://www.odva.org of the Open Device Vendor Association.

Conventions Used in this Manual

The following conventions are used throughout this manual.

- Bulleted lists such as this one provide information, not procedural steps.
- Numbered lists provide sequential steps or hierarchical information.
- Words that you type or select appear in bold.
- When we refer you to another location, the section or chapter name appears in italics.

You, the customer, are responsible for thoroughly inspecting the equipment before accepting the shipment from the freight company. Check the item(s) you receive against your purchase order. If any items are obviously damaged, it is your responsibility to refuse delivery until the freight agent has noted the damage on the freight bill. Should you discover any concealed damage during unpacking, you are responsible for notifying the freight agent. Leave the shipping container intact and request that the freight agent make a visual inspection of the equipment.

Store the product in its shipping container prior to installation. If you are not going to use the equipment for a period of time, store using the following guidelines.

- Use a clean, dry location
- Maintain an ambient temperature range of -40 to $70^{\circ} \mathrm{C}$ (-40 to $158^{\circ} \mathrm{F}$)
- Maintain a relative humidity range of 5% to 95%, non-condensing
- Store it where it cannot be exposed to a corrosive atmosphere
- Store it in a non-construction area

Allen-Bradley Support

Allen-Bradley offers support services worldwide, with over 75 Sales/ Support Offices, 512 authorized Distributors and 260 authorized Systems Integrators located throughout the United States alone, plus Allen-Bradley representatives in every major country in the world.

Local Product Support

Contact your local Allen-Bradley representative for:

- Sales and order support
- Product technical training
- Warranty support
- Support service agreements

Technical Product Assistance

If you need to contact Allen-Bradley for technical assistance, please review the information in the chapter Maintaining Your Ultra5000 first, then call your local Allen-Bradley representative. For the quickest possible response, please have the catalog numbers of your products available when you call.

Comments Regarding this Manual

To offer comments regarding the contents of this manual, go to www.ab.com/manuals/gmc and download the Motion Control Problem Report form. Mail or fax your comments to the address/fax number given on the form.

Installing Your Ultra5000

Chapter Objectives

This chapter provides system installation guidelines and procedures for mounting your Ultra5000. This chapter covers the following topics:

- Complying with European Union Directives
- Before Mounting Your System
- Bonding Your System
- Mounting Your Ultra5000 Drive

The following information is a guideline for proper installation. The National Electrical Code and any other governing regional or local codes overrule this information. The Allen-Bradley Company cannot assume responsibility for the compliance or the noncompliance with any code, national, local or otherwise, for the proper installation of this system or associated equipment. If you ignore codes during installation, the hazard of personal injury and/or equipment damage exists.

Complying with European Union Directives

If this product is installed within the European Union or EEC regions and has the CE mark, the following regulations apply.

Note: Declarations of Conformity (DOCs) to EU Directives are available on-line at www.ab.com/certification for Motion Control products. The web site is the authoritative source for verifying compliance and suitability for use of this and other Rockwell Automation/Allen-Bradley products.
The web site also provides links to other certification agencies (UL, CSA, etc.).

EMC Directive

This unit is tested to meet Council Directive 89/336/EEC
Electromagnetic Compatibility (EMC) using a technical construction file and the following standards, in whole or in part:

- EN 50081-2 EMC - Emission Standard, Part 2 - Industrial Environment
- EN 50082-2 EMC - Immunity Standard, Part 2 - Industrial Environment
- EN 61800-3 - Adjustable Speed Electrical Power Drive Systems, Part 3 - EMC Product Standard including specific test methods

The product described in this manual is intended for use in an industrial environment.

To meet CE requirements, the following additions are required:

- Install a power line filter between the AC power source and the drive input, as close to the drive as possible. (Refer to AC Line Filters on page C-3.)
- Terminate the motor power cable shield to the chassis clamp provided.
- To meet CE requirements, the following additions may also be required:
- Run single-phase input wiring in conduit that is grounded to the enclosure.
- Terminate the shields of the motor power cables and the motor feedback cables to the enclosure at the point of entry.

Low Voltage Directive

These units are tested to meet Council Directive 73/23/EEC Low Voltage Directive. The EN 60204-1 Safety of Machinery-Electrical Equipment of Machines, Part 1-Specification for General Requirements standard applies in whole or in part. Additionally, the standard EN 50178 Electronic Equipment for use in Power Installations applies in whole or in part.

Refer to Appendix B for interconnect information.

Before Mounting Your System

Before you mount your Ultra5000 system make sure you understand the following:

- How to Store Your Ultra5000 Before Installation
- How to Unpack the System
- Minimum Mounting Requirements

How to Store Your Ultra5000 Before Installation

The Ultra5000 should remain in the shipping container prior to installation. If the equipment is not to be used for a period of time, store it as follows:

- Use a clean, dry location
- Maintain an ambient temperature range of -40 to $70^{\circ} \mathrm{C}$ (-40 to $158^{\circ} \mathrm{F}$)
- Maintain a relative humidity range of 5% to 95%, non-condensing
- Store it where it cannot be exposed to a corrosive atmosphere
- Store it in a non-construction area

How to Unpack the System

Each Ultra5000 ships with the following:

- One Ultra5000 drive
- One installation manual, publication 2098-IN001
- Two I/O connector plugs (28 pin CN1A and 14 pin CN1B)
- One screwdriver
- One clear plastic terminal strip cover

IMPORTANT Do not discard the clear plastic terminal strip cover. Installing the plastic strip on the power terminal strip provides a physical barrier and protection.

Ultra5000 drives with DeviceNet (2098-IPD-xxx-DN and -HV $x x x$-DN only) ship with the following additional items:

- One reference manual, publication 2098-RM002, for Ultra5000 drives with DeviceNet
- One DeviceNet connector plug for Ultra5000 drives with DeviceNet

Remove all packing material, wedges, and braces from within and around the components. After unpacking, check the item(s) name plate catalog number against the purchase order.

Minimum Mounting Requirements

There are several things that you need to take into account when preparing to mount the Ultra5000:

- The Ultra5000 is classified as IEC controlgear, and must be housed in an enclosure that meets IEC60529 requirements for electrical enclosure of controlgear.
- The ambient temperature of the location in which you will install the Ultra5000 must not exceed $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$.
- You must install the enclosure on a flat, rigid, vertical surface that will not be subjected to shock, vibration, moisture, oil mist, dust, or corrosive vapors.
- You need to maintain minimum clearances (refer to Figure 1.1) within the enclosure for proper airflow, easy module access, and proper cable bend radius.

Refer to $\operatorname{Appendix} A$ for mounting dimensions, power dissipation, and environmental specifications for the Ultra5000.

Ventilation Requirements

This section provides information to assist you in sizing your cabinet and locating your Ultra5000 drive(s) inside the cabinet.

Figure 1.1
 Minimum Clearance Requirements

Refer to Power Dissipation on page A-5 for Ultra5000 power dissipation specifications.

Sizing an Enclosure

As an additional aid in sizing an enclosure, with no active method of heat dissipation, either of the following approximate equations can be used:

Metric	Standard English
	$A=\frac{0.38 Q}{1.8 T-1.1}$

Transformer Sizing

The Ultra5000 does not require isolation transformers. However, a transformer may be required to match the voltage requirements of the controller to the available service. To size a transformer for the main AC power inputs, the power output (KVA) of each axis must be known. This can be derived by calculating the horsepower for each axis and converting that horsepower into units of watts. If you are supplying power to more than one motor and an Ultra5000, simply add the kW ratings together from each calculation to get a system kW total.

IMPORTANT

If using an autotransformer, ensure that the phase to neutral/ground voltages do not exceed the input voltage rating of the drive referenced in General Power Specifications on Page A-1.

Calculating Transformer Size Based on Speed/Torque Data

Base the transformer size on the operating point within the speed/ torque curve for the drive and motor application as shown in Figure 1.2. The operating point for this hypothetical 230 V drive/motor combination is $23 \mathrm{lb}-\mathrm{in}$ and 3200 rpm .

Figure 1.2
Transformer Sizing Based on Speed/Torque Data for Single Phase System

The formula and calculation are:

$$
\begin{aligned}
& K V A=\frac{\operatorname{Speed}(R P M) \times \text { Torque }(\mathrm{lb}-\text { in })}{63,025} \times \frac{746 \text { Watts }}{H P} \times \frac{\text { KVA }}{1000 \text { Watts }} \times 2.0 \\
& K V A=\frac{3200 \mathrm{rpm} \times 23.0 \mathrm{lb}-\text { in }}{42,250} \\
& \text { TransformerSize }=1.75 \mathrm{KVA}
\end{aligned}
$$

Definitions:
$\mathrm{kW}=$ power or real power
$\mathrm{KVA}=$ apparent power
Transformer KVA rating $=($ Sum of average output power of each axis $) \times 2.0$.
IMPORTANT Calculations are multiplied by a factor to compensate for the power and loss elements within a power system.

- A factor of 2.0 is used with a single phase system.
- A factor of 1.5 is used with a three phase system.

This factor minimizes the effects of the secondary line voltage sagging in the transformer during peak current periods.

IMPORTANT

If you are using the Rockwell Automation/ Allen-Bradley system sizing program, the average speed and average torque data has already been calculated and can be used in the equation. If you are not sure of the exact speed and torque in your application, another approach is to look at the speed/torque curve for your Ultra5000/motor combination and use the values for the worst case continuous speed and torque.

Fuse Sizing

The Ultra5000 is listed by Underwriters Laboratories, Inc. with fuses sized as four times the continuous output current of the drives (FLA), according to UL 508C.

In most cases, fuses selected to match the drive input current rating will meet the NEC requirements and provide the full drive capabilities. Dual element, time delay (slow acting) fuses should be used to avoid nuisance trips during the inrush current of power initialization. Refer to the section General Power Specifications in Appendix A for input current and inrush current specifications.

The Ultra5000 utilizes solid state motor short circuit protection rated as shown in the table below.

Drive Models:	Short Circuit Current Rating with No Fuse Restrictions:	Short Circuit Current Rating with Fuse Restrictions:
2098-IPD-xxx-xx	Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes, 240 V maximum.	Suitable for use on a circuit capable of delivering not more than 200,000 rms symmetrical amperes, 240V maximum, when protected by high interrupting capacity, current limiting fuses meeting UL 198C (Class CC, G, J, L, R, T).
2098-IPD-HV $x x x-x x$	Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes, 480V maximum.	Suitable for use on a circuit capable of delivering not more than 200,000 rms symmetrical amperes, 480 V maximum, when protected by high interrupting capacity, current limiting fuses meeting UL 198C (Class CC, G, J, L, R, T).
		Mains Input Fuses Mains input fuses shall be dual element time delay types class RK5, J or CC only. Fuse current ratings shall be the following, or the closest standard value to these minimums:
		Auxiliary Input Fuses Auxiliary input fuses shall be dual element time delay types class RK5, J or CC only. Fuse current rating shall be the following, or the closest standard value to these minimums. All drive sizes 0.4 A

Bonding Your System

Bonding is the practice of connecting metal chassis, assemblies, frames, shields and enclosures to reduce the effects of electromagnetic interference (EMI).

Bonding Modules

Unless specified, most paints are not conductive and they act as insulators. To achieve a good bond between modules and the subpanel, surfaces need to be paint-free or plated. Bonding metal surfaces creates a low-impedance exit path for high-frequency energy.

Improper bonding blocks that direct exit path and allows high-frequency energy to travel elsewhere in the cabinet. Excessive high-frequency energy can effect the operation of other microprocessor controlled equipment. The illustrations that follow (refer to Figure 1.3) show details of recommended bonding practices for painted panels, enclosures, and mounting brackets.

Figure 1.3
Recommended Bonding Practices

Bonding Multiple Subpanels

Bonding multiple subpanels creates a common low impedance exit path for the high frequency energy inside the cabinet. Subpanels that are not bonded together may not share a common low impedance path. This difference in impedance may affect networks and other devices that span multiple panels. Refer to the figure below for recommended bonding practices.

Figure 1.4
Multiple Subpanels and Cabinet

Mounting Your Ultra5000 Drive

The procedures in this section assume you have prepared your panel and understand how to bond your system. For installation instructions regarding other equipment and accessories, refer to the instructions that came with each of the accessories for their specific requirements.

This product contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Follow static control precautions when you install, test, service, or repair this assembly.

Refer to Allen-Bradley publication 8000-4.5.2, Guarding Against Electrostatic Damage or any other applicable ESD Protection Handbook.
Failure to observe this precaution may result in damage to the equipment.

To mount your Ultra5000 drive:

1. Layout the positions for the Ultra5000 and accessories in the enclosure. Mounting hole dimensions for the Ultra5000 are shown in Appendix A.
2. Attach the Ultra5000 to the cabinet, first using the upper mounting slots of the drive and then the lower. The recommended mounting hardware is M5 metric ($1 / 4-20$) or \#10 MS bolts. Observe bonding techniques as described in Bonding Your System.
3. Tighten all mounting fasteners.

Ultra5000 Connector Information

Chapter Objectives

This chapter provides connector information and procedures for wiring your Ultra5000 and making cable connections. This chapter includes:

- Understanding Ultra5000 Controller Functions
- Understanding Ultra5000 Connectors
- Understanding Ultra5000 I/O Specifications
- Understanding Motor Encoder Feedback Specifications
- Understanding Auxiliary Encoder Feedback Specifications
- Understanding the Serial Interface

Understanding Ultra5000 Controller Functions

This section provides a short overview of the Ultra5000.

Ultra5000 Block Diagram

The Ultra5000 uses a two-stage circuit card solution with the capability of adding two additional option cards. The first stage is the processor circuit board and the second stage handles I/O connections including a power module interface. Figure 2.1 depicts the stages and the interfaces.

Figure 2.1
Block Diagram of Ultra5000 Controller Functions

Understanding Ultra5000 Connectors

The following table provides a brief description of the Ultra5000 front panel connectors and describes the connector type.

Designator	Description	Connector
CN1A	User Input/Output	28-pin, 3.5mm, double-row, plugable spring clamp
CN1B	User Input/Output	14-pin, 3.5mm, double-row, plugable spring clamp
CN2	Motor Feedback	15-pin high-density D-shell
CN3A	Main Serial Port	9-pin standard D-shell
CN3B	Auxiliary Serial Port	9-pin standard D-shell
TB	DC bus, Motor and	9-position screw style barrier terminal strip (2098-IPD-005xx, -010-xx, and -020-xx)
TB1	DC bus, Motor, AC power, and Auxiliary AC power	11- or 12-position screw style barrier terminal strip (2098-IPD-030-xx, -075-xx, -150- $x x$, and HVxxx-xx)
TB2	Shunt	3-position screw style barrier terminal strip (2098-IPD-030- $x x,-075-x x,-150-x x, ~ a n d ~$ HVxxx-xx)

CN1A and CN1B signal connections on the Ultra5000 use plugable, spring-clamp connectors with 3.5 mm spacing. Mating connectors for discrete user wiring are included with your Ultra5000.

CN2, CN3A and CN3B signal connections on the Ultra5000. Mating connectors for these D-shell type connectors are commonly available.

DeviceNet signal connections on the Ultra5000 with DeviceNet (2098-IPD- $x x x$-DN and -HV $x x x x$-DN only) use a 5 -pin DeviceNet connector. The mating connector is included with your Ultra5000.

For connector pin-outs and the location of connectors, switches, and status LEDs on:	For I/O, Motor Feedback and Serial Communications Port Connections refer to:	For Terminal Block (Power) Connections refer to:
2098-IPD- $x x x$ Ultra5000 drives	Figure 2.2 and the tables on pages 2-5 through 2-7.	table on page 3-17.
2098-IPD- $x x x-$ DN Ultra5000 drives with DeviceNet interface	Figure 2.5 and the tables on pages 2-13 through 2-15.	table on page 3-17.
2098-IPD-HV $x x x$ high voltage (460VAC) UItra5000 drives	Figure 2.7 and the tables on pages 2-5 through $\underline{2-17}$.	table on page 3-17.

230V Ultra5000 Front Panel Connections

This section describes and provides a visual reference to the drive's connectors.

500W, 1 kW, and 2 kW Ultra5000 (2098-IPD-005, -010, and -020)

Use the figure below to locate the front panel connections on the Ultra5000 230 V drives ($500 \mathrm{~W}, 1 \mathrm{~kW}$, and 2 kW). Detailed descriptions of the connections are provided.

Figure 2.2
Ultra5000 Front Panel Connections for 2098-IPD-005, -010, and -020

I/O Connectors

CN1A (28-pin) and CN1B (14-pin) are plugable, double-row, spring clamp connectors with 3.5 mm spacing. Maximum wire gauge for these connectors is $0.75 \mathrm{~mm}^{2}$ (18 AWG).

The following tables provide the signal description and pin-outs for the CN1A and CN1B I/O connectors.

Note: These tables are arranged to match the drive's I/O pin arrangement..

$\begin{aligned} & \hline \text { CN1A } \\ & \text { Pin } \end{aligned}$	Description	Signal	$\begin{aligned} & \hline \text { CN1A } \\ & \text { Pin } \end{aligned}$	Description	Signal
15	Digital Input 9	INPUT9	1	Digital Input 1^{2}	INPUT1
16	Digital Input 10	INPUT10	2	Digital Input 2^{2}	INPUT2
17	Digital Input 11	INPUT11	3	Digital Input 3	INPUT3
18	Digital Input 12	INPUT12	4	Digital Input 4	INPUT4
19	Digital Input 13	INPUT13	5	Digital Input 5	INPUT5
20	Digital Input 14	INPUT14	6	Digital Input 6	INPUT6
21	Digital Input 15	INPUT15	7	Digital Input 7	INPUT7
22	Digital Input 16	INPUT16	8	Digital Input 8	INPUT8
23	Digital Output 5	OUTPUT5	9	Digital Output 1	OUTPUT1
24	Digital Output 6	OUTPUT6	10	Digital Output 2	OUTPUT2
25	Digital Output 7	OUTPUT7	11	Digital Output 3	OUTPUT3
26	Relay Output 1+	OUTPUT8+	12	Digital Output 4	OUTPUT4
27	Relay Output 1-	OUTPUT8-	13	Shield Termination	SHIELD
28	I/O Ground	IOCOM ${ }^{1}$	14	I/O Power Supply	IOPWR ${ }^{1}$
${ }^{1}$ The Ultra5000 0.5, 1.0, and 2.0 kW drives (2098-IPD-005-xx, 2098-IPD-010-xx, 2098-IPD-020-xx, and 2098-IPD-HVxx-xx models) require a user supplied $\mathrm{I} / 0$ power source. Refer to Digital I/O Power Supply on page 2-19 for more information. ${ }^{2}$ High speed inputs. Refer to Digital Inputs on page 2-20 for additional information.					

CN1B Pin	Description	Signal
8	5 G Ground	$+5 V C O M$
9	Analog Input 1	AIN1
10	Analog Input 2	AIN2
11	5 V Ground	$+5 V C O M$
12	Analog Output 1	AOUT1
13	Analog Output 2	AOUT2
14	Shield Termination	SHIELD

CN1B Pin	Description	Signal
1	5 V Power Supply	+5 V
2	Auxiliary Encoder I/0 A+	AX +
3	Auxiliary Encoder I/O A-	AX-
4	Auxiliary Encoder I/0 B+	BX+
5	Auxiliary Encoder I/0 B-	BX-
6	Auxiliary Encoder I/0 I+	IX +
7	Auxiliary Encoder I/0 I-	IX-

Motor Encoder Connector

The following table provides the signal descriptions and pin-outs for the CN2 motor encoder ($15-\mathrm{pin}$) connector.

CN2 Pin	Description	Signal
1	Channel A+	AM+
2	Channel A-	AM-
3	Channel B+	BM+
4	Channel B-	BM-
5	Channel I+	IM+
6	Common	ECOM
7	Reserved on 2098-005-xx, -010-xx, -020-xx	-
	Encoder Power (+9V) on 2098-030-xx, -050-xx, $-075-x x$, -150-xx, -HV030-xx, -HV050-xx, -HV100-xx, -HV150-xx, and -HV220-xx	EPWR +9V
8	Commutation Channel S3	S3
9	Positive Overtravel Limit	+LIMIT
10	Channel I-	IM-
11	Thermostat	TS
12	Commutation Channel S1	S1
13	Commutation Channel S2	S2
14	Encoder Power (+5V)	EPWR +5V
15	Negative Overtravel Limit	-LIMIT

Serial Port Connectors

The following table provides the signal descriptions and pin-outs for the CN3A (Main) and CN3B (Auxiliary) serial port (9-pin) connectors. Refer to Default Serial Interface Settings on page 2-34 for additional information.

CN3 Pin	Description	Signal	
1	RS-422/RS-485 Input+	RCV+	
2	RS-232 Input	RCV	
3	RS-232 Output	XMT	$\operatorname{Pin} 9 \quad(0) P i n$
4	RS-422/RS-485 Output+	XMT+	0
5	Common	COM	$\text { Pin } 6-0$
6	Reserved	-	
7	RS-422/RS-485 Input-	RCV-	Connector Pinout
8	RS-422/RS-485 Output-	XMT-	
9	Reserved	-	

Terminal Block

The following table lists the connections on the Ultra5000 230V drive (500W, 1 kW , and 2 kW) power terminal block (TB). Refer to Wiring, Power Connections on page 3-14 for additional information.

[^0]
3 kW Ultra5000
 (2098-IPD-030)

Use the figure below to locate the front panel connections on the Ultra 5000230 V drive (3 kW). Detailed descriptions of the digital connections are provided on pages $2-5$ through 2-7. Power connections are described below.

Figure 2.3
Ultra5000 Front Panel Connections for 2098-IPD-030

The following tables list the power and shunt connections on the terminal block (TB). Refer to Wiring Power Connections on page 3-14 for additional information.

Terminal Blocks

The following tables list the connections on the Ultra5000 230V drive (3 kW) power (TB1) and the shunt (TB2) terminal blocks. Refer to Wiring Power Connections on page 3-14 for additional information.

Terminal Block 1 (TB1) Locations
(2098-IPD-030-xx)
U (Motor) ${ }^{2}$
V (Motor) $)^{2}$
$\mathrm{W}\left(\right.$ Motor) ${ }^{2}$
Motor Case Ground
DC Bust ${ }^{1}$
DC Bus- ${ }^{1}$
L1 (Main AC)
L2/N (Main AC)
Safety (Earth) Ground
L1 (Aux AC) ${ }^{3}$
L2/N (Aux AC) ${ }^{3}$

${ }^{1}$ Do not connect an external I/O power supply to the DC bus. The DC+ and DC- terminals connect directly to the power bus of the drive.
2 Ensure motor power is wired with proper phasing relative to the motor terminals. On some motors, the motor leads may be labeled R, S, and T which correspond to U, V, and W .

3 The auxiliary AC power inputs require dual element time delay (slow acting) fuses to accommodate inrush current. Refer to the section General Power Specifications in Appendix \underline{A} for the inrush current on the auxiliary AC power input.

Shunt Terminal Block 2 (TB2) Locations (2098-IPD-030-xx)

1 - Common Terminal for External or Internal Shunt ${ }^{1}$
2 - Internal Shunt Terminal ${ }^{1}$
3 - External Shunt Terminal ${ }^{1}$

[^1]
7.5 kW, and 15 kW Ultra5000
 (2098-IPD-075, and -150)

Use the figure below to locate the front panel connections on the Ultra5000 230 V drives (7.5 kW , and 15 kW). Detailed descriptions of the digital connections are provided on pages $2-5$ through 2-7. Power connections are provided on page 2-11.
Figure 2.4
Ultra5000 Front Panel Connections
for 2098-IPD-075, and -150

I/O Connectors

CN1A (28-pin) and CN1B (14-pin) are plugable, double-row, spring clamp connectors with 3.5 mm spacing. Refer to the tables on page $2-5$ for pin-outs.

Motor Encoder Connector

CN2 (15-pin) motor encoder connector is a standard D-shell connector. Refer to the table on page 2-6 for pin-outs.

Serial Port Connectors

The CN3A (Main) and CN3B (Auxiliary) are standard D-shell connectors for serial port (9-pin) communications. Refer to the table on page $2-7$ for pin-outs.

Terminal Blocks

The following tables list the connections on the Ultra5000 230 V drives (7.5 kW , and 15 kW) power (TB1) and the shunt (TB2) terminal blocks. Refer to Wiring Power Connections on page 3-14 for additional information

Terminal Block 1 (TB1) Locations
(2098-IPD-075-xx and -150-xx)
U (Motor) ${ }^{2}$
V (Motor) 2
W (Motor) 2
Motor Case Ground
DC Bus+ ${ }^{1}$
DC Bus- ${ }^{1}$
L1 (Main AC)
L2 (Main AC)
L3 (Main AC)
L2 (Aux AC) ${ }^{3}$

[^2]
Shunt Terminal Block 2 (TB2) Locations
 (2098-IPD-075-xx and -150-xx)

1 - Common Terminal for External or Internal Shunt
2 - Internal Shunt Terminal ${ }^{1}$
3 - External Shunt Terminal ${ }^{1}$

[^3]
230 V Ultra5000 with DeviceNet Front Panel Connections

This section describes and provides a visual reference to drive's having the DeviceNet interface.

500W, 1 kW, and 2 kW Ultra5000 with DeviceNet (2098-IPD-005-DN, -010-DN, and -020-DN)

Use the figure below to locate the front panel connections on the 230 V Ultra 5000 with DeviceNet drives ($500 \mathrm{~W}, 1 \mathrm{~kW}$, and 2 kW). Detailed descriptions of the digital connections are provided on pages $\underline{2-5}$ through $2-7$. Power connections are provided on page 2-11. DeviceNet connections are provided on page 2-14.

Figure 2.5
Ultra5000 with DeviceNet Front Panel Connections for 2098-IPD-005-DN, -010-DN, and -020-DN

I/O Connectors

CN1A (28-pin) and CN1B (14-pin) are plugable, double-row, spring clamp connectors with 3.5 mm spacing. Refer to the tables on page 2-5 for pin-outs.

Motor Encoder Connector

CN2 (15-pin) motor encoder connector is a standard D-shell connector. Refer to the table on page $2-6$ for pin-outs.

Serial Port Connectors

The CN3A (Main) and CN3B (Auxiliary) are standard D-shell connectors for serial port (9-pin) communications. Refer to the table on page $2-7$ for pin-outs.

DeviceNet Connector

The following table provides the signal descriptions and pin-outs for the DeviceNet port (5-pin) connector.

Terminal	Signal	Description
1	V-	Network Power Common 24V DC
2	Can_L	Network Communication Signal Line
3	Shield	Shield
4	Can_H	Network Communication Signal Line
5	V+	Network Power 24V DC

3 kW, 7.5 kW, and 15 kW Ultra5000 (2098-IPD-005-DN, -010-DN, and -020-DN)

Use the figure below to locate the front panel connections on the 230 V Ultra 5000 with DeviceNet drives ($3 \mathrm{~kW}, 7.5 \mathrm{~kW}$, and 15 kW). Detailed descriptions of the connections are provided. Detailed descriptions of the digital connections are provided on pages $2-5$ through 2-7. Power connections are provided on page 2-11. DeviceNet connections are provided on page 2-14.

Figure 2.6
Ultra5000 with DeviceNet Front Panel Connections for 2098-IPD-030-DN, -075-DN, and -150-DN

ote: 2098-IPD-030-DN oes not have 3 power terminal.

460V Ultra5000 Front Panel Connections

Use the figure below to locate the front panel connections on the 460 V Ultra 5000 drives ($3 \mathrm{~kW}, 5 \mathrm{~kW}, 10 \mathrm{~kW}, 15 \mathrm{~kW}$ and 22 kW).

Detailed descriptions of the digital connections are provided on pages $\underline{2-5}$ through $\underline{2-7}$. Power connections are provided on page $2-11$. DeviceNet connections are provided on page 2-14.

Figure 2.7
Ultra5000 Front Panel Connections
for 2098-IPD-HV030-xx, -HV050-xx, -HV100-xx, -HV150-xx, and -HV220-xx

CN3A 9-pin
Main Serial Port

CN3B 9-pin
Auxiliary Serial Port

CN2 15-pin
Motor Encoder
DC Bus Terminals for Shunt Resistor

DC Bus Terminals

Motor Power Terminals

AC Input Power Terminals

CN1A 28-pin
Digital I/O

CN1B 14-pin
Auxiliary Encoder and Analog I/O

I/O Connectors

CN1A (28-pin) and CN1B (14-pin) are plugable, double-row, spring clamp connectors with 3.5 mm spacing. Refer to the tables on page $2-5$ for pin-outs.

Motor Encoder Connector

CN2 (15-pin) motor encoder connector is a standard D-shell connector. Refer to the table on page 2-6 for pin-outs.

Serial Port Connectors

The CN3A (Main) and CN3B (Auxiliary) are standard D-shell connectors for serial port (9-pin) communications. Refer to the table on page 2-7 for pin-outs.

Terminal Blocks

The following tables list the connections on the 460 V Ultra5000 drives ($3 \mathrm{~kW}, 5 \mathrm{~kW}, 10 \mathrm{~kW}, 15 \mathrm{~kW}$ and 22 kW) power (TB1) and the shunt (TB2) terminal blocks. Refer to Wiring Power Connections on page 3-14 for additional information.

IMPORTANT

The 2098-IPD-HV $x x x-x x$ drives can be powered with $230-240$ Vrms in order to be used in conjunction with motors designed for 230 V operation. In such cases, the voltage levels used for shunting and DC bus overvoltage limits are adjusted to be compatible with the voltage limit of the motor.

Terminal Block 1 (TB1) Locations (2098-IPD-HV $x x x-x x$)		
DC Bus+ ${ }^{1}$		
DC Bus- ${ }^{1}$	[¢5]]	
W (Motor) ${ }^{2}$	[¢다]	
V (Motor) ${ }^{2}$	\|[2] ${ }^{\text {cos }}$	
U (Motor) ${ }^{2}$	[[5]]	
Ground (Motor and Earth)	[[5] $\\|^{\text {a }}$	
L3 (Main AC)	[6]]	
L2 (Main AC)	[¢5]	
L2 (Main AC)	[5] $]^{\text {che }}$	
L1 (Main AC)	[15]]	
L1 (Aux AC) ${ }^{3}$	[(5)]	
L2 (Aux AC) ${ }^{3}$		
${ }^{1}$ Do not connect an external I/O power supply to the DC bus. The DC+ and DC- terminals connect directly to the power bus of the drive.		
${ }^{2}$ Ensure motor power is wired with proper phasing relative to the motor terminals. On some motors, the motor leads may be labeled R, S, and T which correspond to U, V, and W .		
3 The auxiliary AC power inputs requir accommodate inrush current. Refer to \underline{A} for the inrush current on the auxilia	ng) fuses to ations in Appendix	

Shunt Terminal Block 2 (TB2) Locations (2098-IPD-HV $x x x-x x$)

1-Common Terminal for External or Internal Shunt ${ }^{1}$
2 - Internal Shunt Terminal ${ }^{1}$
3 - External Shunt Terminal ${ }^{1}$

[^4]Understanding Ultra5000 I/O Specifications

A description of the Ultra5000 input/output is provided on the following pages.

Digital I/O Power Supply

Power for the digital I/O on $0.5 \mathrm{~kW}, 1.0 \mathrm{~kW}$, and 2.0 kW Ultra 5000 230 V drives (2098-IPD-005 through -020) and all 460 V drives (2098-IPD-HV $x x x-x x$) must be provided by an external $12-24 \mathrm{~V}$ dc power supply.

Power for the digital I/O on 3.0 kW through 15 kW Ultra 5000 drives (2098-IPD-030 through -150) is provided by an external $12-24 \mathrm{~V}$ dc power supply or by a 24 V dc power source internal to the drive.

Two jumpers on the regulator board must be repositioned if the internal power source is to be used. Refer to Figure 3.2 on Page 3-3 for the location of the jumpers. The internal supply is fused by F1, a fast acting 1 A fuse. The common for the internal supply is lightly referenced to ground, through a 1 M ohm resistor. When using the internal 24 V supply, the common must be grounded during installation to meet the European Low Voltage Directive.

The following table provides a description of the requirements for an external digital I/O power supply for all Ultra5000 drives (2098-IPD-005-xx through 2098-IPD-150-xx, and 2098-IPD-HV030-xx through 2098-IPD-HV220-xx).

Parameter	Description	Minimum	Maximum
I/O Power Supply Voltage	Voltage range of the external power supply for proper operation of the digital I/O.	10.8 V	26.4 V
I/O Power Supply Current	Current draw from the external power supply for the digital I/O, not including the relay output usage.	-	300 mA

The following table provides specifications on the internal digital I/O power supply for the 230 V Ultra 50003.0 kW through 15 kW drives (2098-IPD-030 through -150 only).

Parameter	Description	Minimum	Maximum
Output Voltage	Voltage difference between I/O PWR and I/O COM	21.6 V	28.0 V
Output Current	Current flow	-	300 mA

Digital Inputs

There are sixteen general purpose digital inputs. They are not connected in hardware to perform a particular function. All digital inputs have the same hardware configuration, shown in Figure 2.8.

IMPORTANT

Configure your digital inputs, in a group, as active high (current sinking) or active low (current sourcing).

Inputs 1 and 2 use high-speed circuitry, with minimal propagation delays, suitable for use in registration applications. Any input can be assigned through firmware to latch the motor or auxiliary position in hardware.

Figure 2.8
Digital Input Circuit

Note: X 1 is controled through software to be "up" for active low and "down" for active high.

The following table provides a description of the digital input specifications.

Parameter	Description	Minimum	Maximum
ON State Voltage, Active High Configuration	Voltage applied to the input, with respect to IOCOM, to guarantee an ON state.	10.8 V	26.4 V
ON State Voltage, Active Low Configuration	Voltage applied to the input, with respect to IOPWR, to guarantee an ON state.	-26.4 V	-10.8 V
ON State Current	Current flow to guarantee an ON State	3.0 mA	12.0 mA
OFF State Voltage, Active High Configuration	Voltage applied to the input, with respect to IOCOM, to guarantee an OFF state.	-1.0 V	3.0 V

Parameter	Description (Continued)	Minimum	Maximum
OFF State Voltage, Active Low Configuration	Voltage applied to the input, with respect to IOPWR, to guarantee an OFF state.	-3.0 V	1.0 V
Propagation Delay, High Speed Inputs	Signal propagation delay from the high speed digital input to the firmware accessible registers, active high or active low, turning ON or turning OFF.	-	0.5 mS
Propagation Delay, Low Speed Inputs	Signal propagation delay from the low speed digital input to the firmware-accessible registers, active high or active low, turning ON or turning OFF.	-	100 mS

Digital Outputs

There are eight general purpose digital outputs. They are not connected in hardware to perform a particular function. Seven digital outputs are transistor outputs, and the drive has a single relay output (Output 8) with normally open contacts.

The configuration of the transistor outputs is shown in Figure 2.9, and the configuration of the relay output is shown in Figure 2.10.

> IMPORTANT

There is no overload protection on the transistor outputs. To some degree, the bipolar transistors limit their own current output, but they have not been designed to specifically protect against shorts to power or ground.

Figure 2.9
Transistor Output Hardware Configuration

Note: X1 is controlled through software to be "up" for active high and "down" for active low.

The following table provides a description of the transistor digital output specifications.

Parameter	Description	Minimum	Maximum
ON State Current	Current flow when the output transistor is ON	-	50 mA
OFF State Current	Current flow when the output transistor is OFF	-	0.1 mA
ON State Voltage	Voltage across the output transistor when ON	-	1.5 V
OFF State Voltage	Voltage across the output transistor when OFF	-	50 V

Figure 2.10
Relay Output Hardware Configuration

The following table provides a description of the relay output specifications.

Parameter	Description	Minimum	Maximum
ON State Current	Current flow when the relay is closed	-	1 A
ON State Resistance	Contact resistance when the relay is closed	-	1 W
OFF State	Voltage across the contacts when the relay is open	-	30 V
OFF Stage Current	Current flow when the relay is open	-	0.01 mA

Analog Inputs

There are two single-ended general purpose analog inputs to use as needed. A 12 bit A/D converter digitizes the signal. The configuration of the input is shown in Figure 2.11.

Figure 2.11
Analog Input Configuration

The following table provides a description of the analog COMMAND input specifications.

Parameter	Description	Minimum	Maximum
Resolution	Number of states that the input signal is divided into which is 2(to the number of bits).	12 bits	-
Input Impedance	Open circuit impedance measured between the + and - inputs.	10 kW	-
Input Signal Range	Voltage applied to the input - Usable	-10 V	+10 V
	Voltage applied to the input - Limit	-14 V	+14 V

Parameter	Description	Minimum	Maximum
Offset Error	Deviation from the correct value expected from analog-to-digital conversion when OV is applied to the input.	-	50 mV
Gain Error	Deviation of the transfer function from unity gain, expressed in a percent of full scale.	-	1%
Propagation Delay	Delay from the input to the firmware-accessible registers.	-	100 mS

Analog Outputs

There are two analog outputs to use as needed. A 12 bit D/A converter generates an analog representation of the digital command value. The analog outputs are set to zero after the power comes up. Figure 2.12 shows the configuration of the analog outputs.

Figure 2.12
Analog Output Configuration

IMPORTANT Output values can vary during power-up until the specified power supply voltage is reached.

The following table provides a description of the analog output specifications.

Parameter	Description	Minimum	Maximum
Resolution	Number of states that the output signal is divided into, which is 2(to the number of bits).	12 Bits	-
Output Current	Current capability of the output.	-2 mA	+2 mA
Output Signal Range	Range of the output voltage.	-10 V	+10 V
Offset Error	Deviation when the output should be at OV.	-	50 mV
Gain Error	Deviation of the transfer function from unity gain, expressed in a percent of full scale.	-	1%

Understanding Motor
Encoder Feedback
Specifications

The Ultra5000 can accept motor encoder signals from the following types of encoders:

- Incremental encoders with TTL outputs, with or without Hall signals
- Sine/Cosine encoders, with or without Hall signals
- Intelligent absolute encoders
- Intelligent high-resolution encoders
- Intelligent incremental encoders

Note: The intelligent absolute, high-resolution, and incremental encoders are available only in Allen-Bradley motors.

AM, BM, and IM Inputs

AM, BM, and IM Input encoder signals are filtered using analog and digital filtering. The inputs also include illegal state change detection. Refer to Figure 2.13 for a schematic of the AM, BM, and IM inputs.

Figure 2.13
Schematic of the Motor Encoder Inputs

The Ultra5000 supports both TTL and Sine/Cosine encoders. The following table provides a description of the AM, BM, and IM inputs for TTL encoders.

Parameter	Description	Minimum	Maximum
AM, BM, and IM ON State Input Voltage	Input voltage difference between the + input and the - input that is detected as an ON state.	+1.0 V	+12.0 V
AM, BM, and IM OFF State Input Voltage	Input voltage difference between the + input and the - input that is detected as an OFF state.	-1.0 V	-12.0 V
Common Mode Input Voltage	Potential difference between any encoder signal and logic ground.	-7.0 V	+12.0 V
DC Current Draw	Current draw into the + or - input.	-30 mA	30 mA
AM, BM Input Signal Frequency	Frequency of the AM or BM signal inputs. The count frequency is 4 times this frequency, since the circuitry counts all four transitions.	-	2.5 MHz
IM Pulse Width	Pulse width of the index input signal. Since the index is active for a percentage of a revolution, the speed will determine the pulse width.	125 nS	-
AM / BM Phase Error, 2.5 MHz Line Frequency	Amount that the phase relationship between the AM and BM inputs can deviate from the nominal 90°.	-22.5°	$+22.5^{\circ}$
AM / BM Phase Error, 1 MHz Line Frequency	Amount that the phase relationship between the AM and BM inputs can deviate from the nominal 90°.	-45°	$+45^{\circ}$

The following table provides a description of the AM and BM inputs for Sine/Cosine encoders.

Parameter	Description	Minimum	Maximum
AM and BM Input Signal Frequency	Frequency of the AM or BM signal inputs. AM and BM Input VoltagePeak-to-peak input voltages of the AM and BM inputs	$0.5 \mathrm{~V}(p-\mathrm{p})$	100 kHz

Hall Inputs

The Ultra5000 uses Hall Signals to initialize the commutation angle for sinusoidal commutation. Hall Signals must be single-ended and can be either open collector type or TTL type. Figure 2.14 shows the configuration of the Hall inputs. If the motor does not have Hall signals, the drive can configured through software to omit the Hall signal requirement.

Figure 2.14
Hall Input Configuration

Thermostat Input

The Ultra5000 can monitor a thermostat signal from a motor and will generate a fault if the motor overheats. Figure 2.15 shows the configuration of the thermostat input. Figure 2.16 on page 2-28 shows a typical connection to a motor with a normally closed thermostat. The logic is designed so that an open condition will generate a fault. If the motor does not have a thermostat signal, the drive can be configured through software to ignore the signal.
Figure 2.15
Thermostat Input Configuration

Figure 2.16
Typical Thermostat Connection

+ Limit and - Limit Inputs

The Ultra5000 drive includes overtravel limit inputs on the motor encoder connector that can be programmed to halt motion. The logic is designed so that an open condition will halt motion in the corresponding direction. If these signals are not used, the drive can be configured through software to ignore the inputs. Figure 2.17 shows the configuration of the +Limit and -Limit inputs. Figure 2.18 shows a typical connection to a motor with integral limit switches.

Figure 2.17

+ Limit and - Limit Input Configuration

Figure 2.18
Typical + Limit and - Limit Connection

Encoder Phasing

For proper motor commutation and control, it is important that the motor feedback signals are phased properly. The drive has been designed so that a positive current applied to a motor will produce a positive velocity and increasing position readings, as interpreted by the drive. Additionally, Hall signals are used to initialize the commutation angle, so the Hall signals must sequence properly and the phase relationship to the motor back-EMF signals must be understood. Figure 2.19 shows the proper sequencing of the Hall signals when positive current is applied to the motor. If the Hall signals are out of phase with the back-EMF signals, the drive can be configured through software to compensate for the phase offset, as long as the sequencing of the Hall signals is correct. Figure 2.20 shows an example where the Hall signals have an offset of 60 degrees.
Figure 2.19
Sequencing and Phasing of the Hall Signals

Figure 2.20
Sequencing and Phasing of the Hall Signals (60° Hall Offset Example)

Figure 2.21 shows the proper phasing of TTL A/B encoder signals when positive current is applied.

Figure 2.21
Phasing of TTL A/B Encoder Signals

Figure 2.22 shows the proper phasing of Sine/Cosine encoder signals when positive current is applied.

IMPORTANT

Notice that the Sine/Cosine encoder signals phasing is different than the phasing of the TTL encoders.

Figure 2.22
Phasing of Sine/Cosine Encoder Signals

Motor Encoder Connection Diagram

Figure 2.23 shows a typical wiring diagram of a motor feedback cable. If the thermostat or limit signals are not available, no connections are required, but the drive must be configured through software to ignore these signals. Refer to Appendix B for specific Ultra5000 drive/motor interconnect diagrams.

IMPORTANT Total resistance of the wiring for encoder power and ground connections between the drive and motor must be less than 1.4 ohms.

Figure 2.23
Drive/Motor Wiring Diagram

Unbuffered Motor Encoder Outputs

The Ultra5000 passes the motor encoder signals directly to the CN1B Auxiliary Encoder Output connector without any conditioning.

Buffered Motor Encoder Outputs

The Ultra5000 includes buffered motor encoder outputs. These signals are generated by the drive after filtering and processing the actual feedback from the motor. Programmable division is also available.

The buffered motor encoder outputs use RS-485 differential drivers and have a maximum signal frequency of 2.5 MHz . The drivers can drive a 2 V differential voltage into a 100 ohm load.

Understanding Auxiliary Encoder Feedback Specifications

The Ultra5000 can accept an auxiliary encoder signal of the following type.
Figure 2.24
Auxiliary Encoder Input Signal Types

Auxiliary Encoder Interface

All encoder input signals (CN1B) are filtered using analog and digital filtering, including illegal state change detection.

The input circuitry includes pull-up and pull-down resistors for compatibility with single-ended and open collector signals, in addition to differential signals.

Figure 2.25 shows the configuration of the AX Auxiliary Encoder Input channel. The BX and IX channels have the same configuration.

Figure 2.25
Schematic of the Auxiliary Encoder Circuitry

The following table provides a description of the auxiliary encoder interface.

Parameter	Description	Minimum	Maximum
ON State Input Voltage	Input voltage difference between the + input and the - input that is detected as an ON state.	+1.0 V	+7.0 V
OFF State Input Voltage	Input voltage difference between the + input and the - input that is detected as an OFF state.	-1.0 V	-7.0 V
Common Mode Input Voltage	Potential difference between an encoder signal and logic ground.	-7.0 V	+12.0 V
DC Current Draw	Current draw into the + and - input.	-5 mA	5 mA
Signal Frequency	Frequency of the AX or BX signal inputs. Count frequency is 4 times this frequency for A/B// type inputs.	-	2.5 MHz
IX Pulse Width, A/B/I Mode	Pulse width of the index input signal. Since the index is active for a percentage of a revolution, the speed will determine the pulse width.	125 nS	-
AX/ BX Phase Error, 2.5 MHz Line Frequency, A/B/I Mode	Amount that the phase relationship between the AM and BM inputs can deviate from the nominal 90	-22.5°	$+22.5^{\circ}$
AX / BX Phase Error, 1 MHz Line Frequency, A/B/I Mode	Amount that the phase relationship between the AM and BM inputs can deviate from the nominal 90	-45°	$+45^{\circ}$

Understanding the Serial Interface

The Ultra5000 provides two physically identical serial ports (Main Serial Port CN3A and Auxiliary Serial Port CN3B) that implement the standard NRZ asynchronous serial format, and supports RS-232, RS-422, and RS-485 communication standards. However, functionality differs between the ports:

- The CN3A serial port communicates at a data rate fixed by the drive at 38400 baud. It is primarily for communications between a PC running Ultraware and the drive.
- The CN3B serial port's data rate is programmable via the drive's user (motion) program. It is primarily for communications between the drive and other devices requiring an interface to the user program.

Standard baud rates include 1,200, 2,400, 4,800, 9,600, 19,200, and 38,400 baud. Data lengths of 7 and 8 bits are supported.

The connector pinout dedicates separate pins for the RS-232 and RS-422/ RS- 485 signals, so that the communication standard can be changed by just using a different cable. Refer to Figure 2.26 for the serial interface configuration.

Figure 2.26
Serial Interface Configuration

RECEIVE

TRANSMIT

Default Serial Interface Settings

The default setting of the Ultra5000 serial interface is as follows:

Parameter	Default Setting
Baud Rate	38,400
Frame Format	8 Data, No Parity, One Stop

Connecting Your Ultra5000

Chapter Objectives

This chapter provides you with information for wiring your Ultra5000. This chapter includes these sections:

- Powering the Digital I/O
- Understanding Basic Wiring Requirements
- Grounding Your Ultra5000
- Wiring Your Ultra5000

Before you begin these procedures, be sure to read and understand the information in the previous chapters of this manual.

Note: The procedures in this chapter do not include information regarding integration with other products.

Powering the Digital $/ \mathbf{O}$

Depending on the model of the Ultra5000 drive, digital I/O power may be provided by the 24 V dc power supply internal to the drive or by an external $12-24 \mathrm{~V}$ power supply.

- A 2098-IPD-005 through -020 230V Ultra5000 drive and any 460 V Ultra5000 drive (2098-IPD-HV030-xx through -HV220-xx) requires an external $12-24 \mathrm{~V}$ power supply for proper operation of the digital I/O.
- A 2098-IPD-030 through -150 Ultra5000 drive's digital I/O is powered with an external $12-24 \mathrm{~V}$ dc power supply, or by a 24 V dc power source internal to the drive.

Requirements for an external digital I/O power supply are:

Parameter	Description	Minimum	Maximum
I/O Power Supply Voltage	Voltage range of the external power supply for proper operation of the digital I/O.	10.8 V	26.4 V
I/O Power Supply Current	Current draw from the external power supply for the digital I/O, not including the relay output usage.	-	300 mA

To convert a 230 V Ultra5000 drive (2098-IPD-030 through -150) from the factory set external I/O power supply, a pair of jumpers on the regulator board must be repositioned. The following section describes how to access that board and change the location of the two jumpers.

Specifications on the internal digital I/O power supply are:

Parameter	Description	Minimum	Maximum
Output Voltage	Voltage difference between I/O PWR and I/O COM	21.6 V	28.0 V
Output Current	Current flow	-	300 mA

Accessing the Internal Digital I/O Power Supply

The 230V (2098-IPD-030 through -150) Ultra5000 drives can power the digital I/O from a 24 V dc power source internal to the drive. Perform the following steps to change the digital I/O power source to the internal 24 V dc power.

DC bus capacitors may retain hazardous voltages after input power has been removed, but will normally discharge in several seconds.

Before working on the drive, measure the DC bus voltage to verify it has reached a safe level or wait a full 5 minutes to ensure that all voltages on the system bus have discharged.

Failure to observe this precaution could result in severe bodily injury or loss of life.

The Ultra5000 contains ESD (Electrostatic Discharge) sensitive parts.

To avoid damaging these parts, follow static control precautions when installing, testing, servicing, or repairing this assembly.

Refer to Allen-Bradley publication 800-4.5.2, Guarding Against Electrostatic Discharge or other appropriate handbooks on ESD protection.

1. Detach the right cover panel by removing the 3 screws ($6-32 \mathrm{x}$ $1 / 4$) in the rear of the drive that secure the cover to the drive. Lift the rear of the cover and slide it forward until the connectors on the front of the drive are cleared. Then lift the cover off the drive. Figure 3.2 on page $3-3$ shows the location of the screws and connectors.

Note: This step assumes the I/O port (CN1A and CN1B) mating connectors were previously removed.
2. Relocate the digital I/O power jumpers on the regulator board. Figure 3.2 shows the location of the J12 and J13 jumpers. Move both jumpers from the EXT position to the INT position.

Note: The fuse (F1) protects the circuit only when the internal power is selected.
3. Reinstall the cover.

Figure 3.1
Removal of Cover Panel from Ultra5000 Drive

Figure 3.2
Jumper Settings for External or Internal Digital I/O Power

Understanding Basic Wiring Requirements

This section contains basic wiring information for the Ultra5000.

Plan the installation of your system so that you can perform all cutting, drilling, tapping, and welding with the system removed from the enclosure.

The system is of an open type construction and care must be taken to prevent metal debris from falling into it.

Damage to the equipment could result if metal debris or other foreign matter contacts or lodges in the circuitry.

IMPORTANT

This section contains common PWM servo system wiring configurations, size, and practices that can be used in a majority of applications. National Electrical Code, local electrical codes, special operating temperatures, duty cycles, or system configurations take precedence over the values and methods provided.

Building Your Own Cables

When building your own cables, follow the guidelines listed below.

- Connect the cable shield to the connector shells on both ends of the cable for a complete 360° connection.
- Use a twisted pair cable whenever possible, twisting differential signals with each other, and single-ended signals with the appropriate ground return.

Refer to Appendix C for mating connector kit catalog numbers.

IMPORTANT

Factory made cables are recommended over
hand-built cables and are designed to minimize EMI.

Routing High and Low Voltage Cables

Be aware that when you connect and route power and signal wiring on a machine or system, radiated noise from nearby relays (relay coils should have surge suppressors), transformers, and other electronic drives, can be induced into motor or encoder feedback, communications, or other sensitive low voltage signals. This can cause system faults and communication problems. To minimize the levels of radiated noise, route machine power and signal lines separately.

Figure 3.3
Routing Power and Signal Cables Inside Your Cabinet

Low voltage communications control I/O wiring motor feedback cables

Grounding Your Ultra5000

We recommend that all equipment and components of a machine or process system have a common earth ground point connected to their chassis. A grounded system provides a safety ground path for short circuit protection. Grounding your modules and panels minimize shock hazard to personnel and damage to equipment caused by short circuits, transient overvoltages, and accidental connection of energized conductors to the equipment chassis. For CE grounding requirements, refer to Appendix B.

Grounding Your System to the Subpanel

The National Electrical Code contains grounding requirements, conventions, and definitions. Follow all applicable local codes and regulations to safely ground your system. Refer to the illustration below for details on grounding your Ultra5000. Refer to Appendix B for the power wiring diagram for your

Ultra5000 drive.

Figure 3.4
Safety Ground Configuration with Multiple Ultra5000 Systems on One Panel

Grounding Multiple Subpanels

To ground multiple subpanels, refer to the figure below.
Figure 3.5
Subpanels Connected to a Single Ground Point

Motor Power Cable Shield Termination

Factory supplied motor power cables for F-Series, H-Series, MP-Series, N -Series, and W-Series motors are shielded, and the power cable is designed to be terminated at the drive during installation. A small portion of the cable jacket is removed which exposes the shield braid. The exposed area must be clamped to the bottom of the drive chassis (refer to Figure 3.6) using the clamp provided.

ATTENTION	High voltage can be present on the shield of a power cable if the shield is not grounded. To avoid hazard of electrical shock, ensure shielded power cables are grounded at a minimum of one point for safety.
Failure to observe these safety procedures could result in personal injury or equipment damage.	

Figure 3.6

Motor Power Cable Shield Connection (bottom of drive)

Figure 3.7
Motor Power Cable Shield Connection (front of drive)

Y-Series motors have a short pigtail cable which connects to the motor, but is not shielded. These motor power cables have a 152.4 mm (6.0 in .) shield termination wire with a ring lug that connects to the closest earth ground. The termination wire may be extended to the full length of the motor pigtail if necessary, but it is best to connect the supplied wire directly to ground without lengthening. Refer to Figure 3.8 for an illustration.

Figure 3.8
Y-Series Motor Power Cable Connection

Wiring Your Ultra5000

These procedures assume you have bonded and mounted your Ultra5000 to the subpanel and that there is no power applied to the system.

ATTENTION

This product contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Follow static control precautions when you install, test, service, or repair this assembly.

Refer to Allen-Bradley publication 8000-4.5.2, Guarding Against Electrostatic Damage or any other applicable ESD Protection Handbook.

Failure to observe this precaution may result in damage to the equipment.

The following sections provide information and procedures on how to wire your Ultra5000.

Connecting Interface Cables

Connect all interface cables as shown in the table below.

This cable:	Plugs into this connector:
28-pin, Digital I/0	CN1A
14-pin, Auxiliary encoder/analog I/0	CN1B
15-pin, Motor encoder feedback	CN2
9-pin, Main serial port	CN3A
9-pin, Auxiliary serial port	CN3B

Wiring I/O Connections

To wire your CN1A and CN1B I/O connectors:

1. Prepare your I / O wires by stripping approximately 6 mm (0.25 in .) of insulation from the end.

Note: Use caution not to nick, cut, or otherwise damage strands as you remove the insulation.
2. Using the small blade type screw driver supplied with your Ultra5000 (part number 9111-0031) depress the spring clamp next to the pin you're prepared to wire and insert the wire, as shown in Figure 3.9.

Figure 3.9
Inserting Wires into the Connector Housing

3. Remove the screw driver and gently pull on the wire to make sure it does not come out of its terminal. Re-insert and test any loose wires.

Connecting to a DeviceNet Network

A DeviceNet network is an arrangement of electrical power and device distribution. A DeviceNet network is planned and adjusted for optimal communications.

Before proceeding to add devices, you need to record the following:

- Network data rate
- Network cable system map (topology) to which you are connecting
- Distances between cable system components
- Device current draw and voltage drop for each device on the network
- Limitation of the trunk and drop cables

Refer to the table below for recommended trunk and drop lengths.

Data Rates	$\mathbf{1 2 5}$ Kbps	$\mathbf{2 5 0}$ Kbps	$\mathbf{5 0 0}$ Kbps
Thick Trunk Line	$500 \mathrm{~m}(1,640 \mathrm{ft})$	$250 \mathrm{~m}(820 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$
Thin Trunk Lengths	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$
Maximum Drop Length	$6 \mathrm{~m}(20 \mathrm{ft})$	$6 \mathrm{~m}(20 \mathrm{ft})$	$6 \mathrm{~m}(20 \mathrm{ft})$
Cumulative Drop Budget	$156 \mathrm{~m}(512 \mathrm{ft})$	$78 \mathrm{~m}(256 \mathrm{ft})$	$39 \mathrm{~m}(128 \mathrm{ft})$

Refer to the DeviceNet Cable System Planning and Installation Manual, publication DNET-UM072, for specific guidance in calculating and attaching the Ultra5000 to a network.

Connecting Your DeviceNet Cable

To attach a plugable, open style, screw-connector to the DeviceNet cable:

1. Strip 65 mm (2.6 in .) to 75 mm (2.96 in .) of the outer jacket from the end of the cable, leaving no more than $6.4 \mathrm{~mm}(0.25 \mathrm{in}$.) of the braided shield exposed.

Figure 3.10
Exposing the braided shield

2. Wrap the end of the cable with 38 mm (1.5 in .) of shrink wrap, covering part of the exposed wires and part of the outer jacket.

Figure 3.11
Adding shrink wrap

3. Strip 8.1 mm (0.32 in .) of the insulation from the end of each of the insulated wire.

Note: Be careful not to nick, cut, or otherwise damage the individual strands of wire.

Trim the last 6.5 mm (0.26 in .) of the bare wires so that the outside dimension does not exceed 0.17 mm (0.045 in .).

Figure 3.12
Exposing wire stands

4. Insert each wire into the appropriate clamping cavity of the plugable screw connector, according to the color of the cable insulation. Tighten the clamping screws to secure each wire.
5. Use an $1 / 8$ inch flat blade screwdriver to firmly attach wires in the connector.

Figure 3.13
Wiring the DeviceNet connector

Terminal	Cable Color	Designation
5	Red	V +
4	White	Can_H
3	Bare	Shield
2	Blue	Can_L
1	Black	V -

6. Attach the Ultra5000 with DeviceNet to the DeviceNet network.

Assigning Your Ultra5000 DeviceNet Address

Use the following procedures to configure your Ultra5000 drive (2098-IPD-xxx-DN, and -HVxxxx-DN) using Ultraware software and apply power to the drive.

To configure your Ultra5000 drive with DeviceNet:

1. Verify that there is no power applied to the drive, and the DeviceNet cable is connected (refer to figures 2.2-2.7 for the connector location).
2. Set the node address for each drive in your system. Valid node addresses are 00-63 and PGM. The MSD rotary switch sets the most significant digit and the LSD rotary switch sets the least significant digit. Refer to figures $\underline{2.5}$ and $\underline{2.6}$ for the switch locations. Refer to the table below for examples.

For this Node Address:	Set the MSD switch to:	Set the LSD switch to:
10	1	0
11	1	1
12	1	2

Note: Selecting an invalid node address (> 63) sets the node address according to a non-volatile parameter stored in the drive.
3. Set the data rate. Valid data rates are $125 \mathrm{kps}, 250 \mathrm{kps}, 500 \mathrm{kps}$, AUTO, and PGM. Refer to figures ${ }^{2.5}$ and 2.6 for the switch location.

Note: Selecting AUTO automatically matches the device data rate to the rate of the network. Selecting PGM sets the data rate according to a non-volatile parameter stored in the drive.

[^5]

Wiring Power Connections

IMPORTANT
The 2098-IPD-HVxxx-xx drives can be powered with $230-240 \mathrm{Vrms}$ in order to be used in conjunction with motors designed for 230 V operation. In such cases, the voltage levels used for shunting and DC bus overvoltage limits are adjusted to be compatible with the voltage limit of the motor.

Power wiring requirements are given in the table below.

Ultra5000 Drives:	Provide this input power:	With this type of wire:	Phasing of main AC power:	Earth ground connection:	Terminal block torque values:
2098-IPD-005xx, -010-xx, and -02-xx	$100-240 \mathrm{~V}$ ac single phase	Copper with 75° $\mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ minimum rating	Arbitrary	Required (for safe and proper system operation)	$1.25 \mathrm{Nm}(11$ lb-in.)
2098-IPD-030-xx	$100-240 \mathrm{~V}$ ac 2098-IPD-075-xx			$2.26 \mathrm{Nm} \mathrm{(20}$ lb-in. $)$	
3-phase			$1.25 \mathrm{Nm}(11$ Ib-in. $)$		
2098-IPD-150-xx					

[^6]For additional information refer to the General Power Specifications section in Appendix A. Refer to Appendix B for the power wiring diagram for your Ultra5000 drive.

The internal 5 V dc power supply fuse opens at 3 amps and automatically resets itself when the current falls below 3 amps . There are no internal fuses requiring replacement.

The Ultra5000 utilizes solid state motor overload protection which operates in accordance with UL 508C.

Motor overload protection trips:	At:
Eventually	100% overload.
Within 8 minutes	200% overload.
Within 20 seconds	600% overload.

ATTENTION

High voltage can be present on the shield of a power cable if the shield is not grounded. Motor power connectors are to be used for connection purposes only - do not use them to turn the unit on and off.

To avoid hazard of electrical shock, ensure shielded power cables are grounded at a minimum of one point for safety. Ensure installation complies with specifications regarding wire types, conductor sizes, branch circuit protection, and disconnect devices. The National Electrical Code (NEC) and local codes outline provisions for safely installing electrical equipment.
Failure to observe these safety procedures could result in personal injury or equipment damage.

To wire your input power and motor connections:

1. Prepare your wires by stripping approximately 12 mm (0.50 in .) of insulation from the end.

IMPORTANT Use caution not to nick, cut, or otherwise damage strands as you remove the insulation.
2. Check for continuity in the motor leads [wires marked U, V, and W (R, S, and T on W-Series)]. Verify that the resistance reading from each wire to earth ground is above 500 k ohms, with the cable connected to the motor.

If your resistance reading is:	Then:
Above 500k ohms	Continue with step 3.
Below 500k ohms	Go to the chapter Maintaining Your Ultra5000.

3. Prepare your motor cable for the cable shield clamp on the Ultra5000 drive by exposing 12 mm (0.50 in .) of cable shield braid, as shown in the figure below.

Figure 3.14

CE Clamp Cable Preparation

For these Ultra5000 drives:	The dimension L has this value:
2098-IPD-005 or -005-DN 2098-IPD-010 or -010-DN 2098-IPD-O20 or -020-DN 2098-IPD-030, -030-DN, -HV030, or -HV030-DN 2098-IPD-HV05O, or -HVO5O-DN 2098-IPD-075, or -075-DN 2098-IPD-HV100, or -HV100-DN	185 mm (7.25 in.)
2098-IPD-150, -150-DN, -HV150 or -HV150-DN 2098-IPD-HV22O or -HV22O-DN	241 mm (9.50 in.)

4．Using a screw driver，loosen the screw for each of the terminal locations and attach wires as shown in the table below．Refer to Appendix B for the power wiring diagram for your Ultra5000 drive．

Terminal Block（TB）Locations （2098－IPD－005xx，－010－xx，－020－xx）	$\begin{aligned} & \text { Terminal Block } 1 \text { (TB1) Locations } \\ & \text { (2098-IPD-030-xx) } \end{aligned}$
DC Bus＋${ }^{1}$	$\mathrm{U}(\text { Motor })^{2}$
CCBus 1 近	
DC Bus－${ }^{\text {－}}$	V（Motor）2
L1（Main AC）	$\mathrm{W}(\text { Motor })^{2}$
L2／N（Main AC）	Motor Case Ground
Safety（Earth）Ground	DC Bus ${ }^{1}$－［近］
U （Motor）${ }^{2}$	DC Bus－${ }^{1}$
V （Motor）${ }^{2}$	L1（Main AC）
W（Motor）2	L2／N（Main AC）
Motor Case Ground	Safety（Earth）Ground
	L1（Aux AC）${ }^{3}$
	L2／N（Aux AC）${ }^{3}$
Terminal Block 1 （TB1）Locations （2098－IPD－075－xx and－150－xx）	Terminal Block Locations （2098－IPD－HVxxx－xx）
U （Motor）${ }^{2}$	DC Bus ${ }^{1}$
V （Motor）${ }^{2}$	DC Bus－${ }^{1}$
$\mathrm{W}(\text { Motor })^{2}$	W（Motor）${ }^{2}$
W（Motor）${ }^{2}$	W（Motor）${ }^{2}$
Motor Case Ground	V（Motor 2 2
DC Bus ${ }^{1}$	$\mathrm{U}\left(\right.$ Motor）${ }^{2}$
DC Bus－${ }^{1}$	Ground（Motor and Earth）
L1（Main AC）\｜［大］）	L3（Main AC）
L2（Main AC）	L2（Main AC）
L3（Main AC）	L1（Main AC）
Safety（Earth）Ground	$\mathrm{LI}^{(A u x ~ A C) ~}{ }^{3}$
$\mathrm{L1}\left(\mathrm{Aux} \mathrm{AC)}{ }^{3}\right.$	$\mathrm{L2}^{(A u x ~ A C) ~}{ }^{3}$
L2／N（Aux AC）${ }^{3}$	

[^7]5. Tighten each terminal screw to the appropriate torque value.

Ultra5000 Drives:	Terminal Block Torque Values:
$\underline{\text { 2098-IPD-005xx, -010-xx, and -02-xx }}$	$1.25 \mathrm{Nm}(11 \mathrm{lb}-\mathrm{in})$
$\underline{2098-I P D-030-x x}$	
$\underline{2098-I P D-075-x x}$	$2.26 \mathrm{Nm}(20 \mathrm{lb}-\mathrm{in})$.
$\underline{2098-I P D-150-x x}$	$1.25 \mathrm{Nm}(11 \mathrm{lb}-\mathrm{in})$.
$\underline{2098-I P D-H V x x x-x x}$	

6. Gently pull on each wire to make sure it does not come out of its terminal. Re-insert and tighten any loose wires.

IMPORTANT
The DC bus connections should not be used for connecting multiple drives together. Contact your Allen-Bradley representative for further assistance if the application may require DC power connections.
7. To connect the motor power cable:

If your motor is:	Then:
F-Series, H-Series, MP-Series, N-Series, WW-Series, or	1. Remove the two screws securing the cable shield clamp on the Ultra5000 drive (refer to figures 3.6 or 3.8 for the cable clamp location on your Ultra5000 drive).
1326AB-Bx -S2L	

8. Determine whether or not a shunt resistor is necessary

If your Ultra5000 catalog number begins with:	And your application requires:	Then:
2098-IPD-005 or -005-DN 2098-IPD-010 or -010-DN 2098-IPD-020 or -020-DN	no shunt	You are finished wiring your Ultra5000 power connections. Go to main step 9.
	external shunt	Connect an external active shunt module to the Terminal Block (TB) as shown in 300 Watt Active Shunt Module on Page B-23.
2098-IPD-030 or -030-DN 2098-IPD-075 or -075-DN 2098-IPD-150 or -150-DN and -HV $x x x-x x$	internal shunt	Connect a jumper to TB2 between terminal 1 and 2 as shown in Figure 3.15. (For the location of TB2, refer to the chapter Ultra 5000 Connector Information beginning on Page 2-1.)
	external shunt	Connect an external shunt resistor to TB2 between terminals 1 and 3 as shown in Figure 3.15. (For the location of TB2, refer to Ultra 5000 Connector Information beginning on Page 2-1.)

Figure 3.15

Connecting Your Shunt Resistor

Connecting the Internal Shunt Resistor ${ }^{1}$
Connecting the External Shunt Resistor

[^8]9. You are finished wiring your Ultra5000 power connections. Go to the chapter Commissioning Your Ultra 5000 beginning on Page 4-1.

Commissioning Your Ultra5000

Chapter Objectives

General Startup
Precautions

This chapter provides you with information to apply power and configure your Ultra5000. This chapter includes these sections:

- General Startup Precautions
- Understanding Communication Switch Settings
- Applying Power To Your System
- Configuring Your Ultra5000

Before you begin these procedures, be sure to read and understand the information in the previous chapters of this manual.

Note: The procedures in this chapter do not include information regarding integration with other products.

The following precautions pertain to all of the procedures in this chapter. Be sure to read and thoroughly understand them before proceeding.

Understanding Communication Switch Settings

This product contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Follow static control precautions when you install, test, service, or repair this assembly.

Refer to Allen-Bradley publication 8000-4.5.2, Guarding Against Electrostatic Damage or any other applicable ESD Protection Handbook.

Failure to observe this precaution may result in damage to the equipment.

The Ultra5000 communication address selector switches (MSD and LSD) allow setting a unique address for each Ultra5000 connected on a serial network. The switches allow setting addresses 0-99. Refer to Figure 2.2 for the switch locations. Addresses are reserved for use as shown in the table below.

Switch Settings:	Description:
0	Reserved for factory use only
1-63	Valid settings for normal drive operation
PGM Settings:	Reserved for factory use only
$64-95$	Disable Program Auto Run mode. With this setting during power-up, programs are not allowed to run. This mode is useful to correct programming problems that may have caused communications loss when the program is running.
96	Set Factory Default Objects mode. With this setting during power-up, all internal firmware objects are reset to factory defaults. Any objects created by a user program are also reset. This mode is useful to return a drive to factory defaults.
97	Reserved for factory use only
98	Boot mode. With this setting during power-up, the only action that my be performed is to upgrade the drive firmware using Ultraware.
99	

Note: Power to the drive must be cycled for firmware to scan and recognize an address switch change.

Applying Power To Your System

This procedure assumes you have wired your Ultra5000 system, verified the wiring, and are ready to begin using your Ultraware software. To apply power to your Ultra5000 system:

1. Disconnect any load to the motor. Ensure the motor is free of all linkages when initially applying power to the system.
2. Set the communication address switches as shown in the example table below. For the location of the address switches, refer to Figure 2.2.

For example, if you have:	Set the MSD switch to:	Set the LSD switch to:
1 drive	0	1
2 drives	0	2
3 drives	0	3
$:$	$:$	$:$
64 drives	6	4

Note: Switch settings above 64 invoke special functions used for programming and troubleshooting. See Understanding Communication Switch Settings on Page 4-2.
3. Apply input power to the Ultra5000 and observe the front panel Logic Power indicator LED as shown in Figure 4.1.

Figure 4.1

Logic Power and Status LED Display
 Status

If the Logic Power LED is:	Then:
ON	Go to step 4.
Not ON	Check your input power connections. Repeat step 3.

4. Observe the front panel seven segment Status LED display as shown in Figure 4.1.

If the Status LED display on your:	Is:	Then:
2098-IPD-xxx, 2098-IPD-HVxxx, 2098-IPD-xxx-DN, and 2098-IPD-HV $x x x$-DN (all Ultra5000 drives)	Actively cycling segments in a full circle	The drive is ready. Go to Configuring Your Ultra 5000 on Page 4-5.
2098-IPD-xxx, 2098-IPD-HVxxx, 2098-IPD-xxx-DN, and 2098-IPD-HV $x x x$-DN (all Ultra5000 drives)	Actively cycle in a half circle with address switches set to $\mathrm{MSD}=9$ and $\mathrm{LSD}=9$	Go to Understanding Communication Switch Settings on Page 4-2 and reset your address switches according to the table.
2098-IPD- $x x x$, 2098-IPD-HVxxx, 2098-IPD-xxx-DN, and 2098-IPD-HV $x x x$-DN (all Ultra5000 drives)	Actively cycle in a half circle with address switches set according to the table in Understanding Communication Switch Settings on Page 4-2.	Your firmware requires an upgrade. Go to Configuring Your Ultra5000 on Page 4-5.
2098-IPD- $x x x$, 2098-IPD-HVxxxx, 2098-IPD-xxx-DN, and 2098-IPD-HV $x x x$-DN (all Ultra5000 drives)	Flashing an "E" followed by two numbers	Go to the chapter Maintaining Your Ultra5000 beginning on Page 5-1.

Configuring Your Ultra5000

This procedure assumes you have successfully applied power to your system. To configure your Ultra5000 system:

1. Start your Ultraware software. Refer to the Ultraware User Manual, publication 2098-UM001, for information on starting the Ultraware software.
2. Open a recently used file or create a new file. Ultraware will scan for on-line drives.
3. Click on the Stop Scanning button when your drive is detected or wait for the scanning to complete.
4. Look for the Ultra5000 icon (Ultra5k) under the On-Line Drives tree. Refer to step 4 in the previous section, Applying Power To Your System.

If you were told:	Then:
The drive is ready	Go to step 5 below.
Your firmware requires an upgrade	1. Select File from the main menu bar.
	2. Select Upgrade Firmware. 3.Go back to step 1 and repeat procedure.

5. The Ultra5000 icon indicates that your drive is detected.

If your Ultra5000 drive:	Then:
Is detected and listed under the On-Line Drives tree	The software and hardware are communicating and the system is ready. Go to the section, Configuring Your Ultra5000, step 4.
Is not detected	1. Go to the previous section, $\frac{\text { Applying Power To Your System, }}{}$ $\frac{\text { step } 3, \text { and verify your address }}{\text { switch settings. }}$
2. Check your serial cable	
connections.	
3. Go to step 1 of this section.	

6. Refer to the Ultraware User Manual, publication 2098-UM001,for further configuration and tuning instructions.

Maintaining Your Ultra5000

Chapter Objectives

This chapter provides a description of maintenance and troubleshooting activities for the Ultra5000. This chapter includes these sections:

- Maintaining the Drive
- General Troubleshooting
- Troubleshooting for DeviceNet Drives

The Ultra5000 Drive is designed to function with a minimum of maintenance.

DC bus capacitors may retain hazardous voltages after input power has been removed, but will normally discharge in several seconds.
Before working on the drive, measure the DC bus voltage to verify it has reached a safe level or wait the full time interval listed on the warning on the front of the drive.

Failure to observe this precaution could result in severe bodily injury or loss of life.

Periodic Maintenance

Normally the only maintenance required is removal of superficial dust and dirt from the drive and a quick check of cable insulation and connections.

Cleaning the Drive

To clean the drive, use an OSHA approved nozzle that provides compressed air under low pressure, less than 20 kPa (30 psi), to blow the exterior surface and the vents clean.

Inspecting the Cables

Ensure input power is disconnected before touching cables or connections and perform the following:

- Visually inspect all cables for abrasion.
- D-shell and Digital I/O connectors should be inspected for proper seating and signal continuity end-to-end.

General Troubleshooting

Refer to the Error Codes section below to identify problems, potential causes, and appropriate actions to resolve the problems. If problems persist after attempting to troubleshoot the system, please contact your Allen-Bradley representative for further assistance. To determine if your Ultra5000 drive has an error, refer to the table below.

If the Logic Power LED is ON and the Status LED display on your:	Is:	Then:
$2098-$ IPD- $x x x$ or -HV $x x x$ drive	Actively cycling segments in a full circle	Your Ultra5000 drive is ready.
$2098-$ IPD- $x x x-$ DN or -HV $x x x-$ DN drive		Your Ultra50000 drive has an error. Proceed to the section Error Codes below.
All drives		

Error Codes

The following list is designed to help you resolve problems when an assigned error code or a problematic symptom (no error code) is encountered.

When a fault is detected, the 7 -segment LED displays a flashing E followed by a two-digit error code, that registers one digit at a time. The error display is repeated until the problem is cleared.

Error Code	Problem or Symptom	Possible Cause(s)	Action/Solution		
	Power (PWR) indicator not ON	No AC power or auxiliary logic power.	Verify power AC power or auxiliary +5 V logic power is applied to the Ultra5000.		
		7-Segment LED not cycling	Firmware corrupt		Call your Allen-Bradley representative.
:---					

Error Code	Problem or Symptom	Possible Cause(s)	Action/Solution
10	Bus Overvoltage	Excessive regeneration of power. When the motor is driven by an external mechanical power source, it may regenerate too much peak energy through the Ultra5000's power supply. The system faults to save itself from an overload.	- Change the deceleration or motion erofile. - Use a larger system (motor and - Ultra5000).
	Use a resistive shunt.		

Error Code	Problem or Symptom	Possible Cause(s)	Action/Solution
21	Auxiliary Encoder state error	The auxiliary encoder encountered an illegal transition.	- Use shielded cables with twisted pair wires. - Route the encoder cable away from potential noise sources. - Bad encoder - replace encoder. - Check the ground connections.
22	Motor Thermal Protection Fault	The internal filter protecting the motor from overheating has tripped.	- Reduce acceleration rates. - Reduce duty cycle (ON/OFF) of commanded motion. - Increase time permitted for motion. - Use larger Ultra5000 and motor. - Check tuning.
23	IPM Thermal Protection Fault	The internal filter protecting the drive from over heating has tripped.	- Reduce acceleration rates. - Reduce duty cycle (ON/OFF) of commanded motion. - Increase time permitted for motion. - Use larger Ultra5000 and motor. - Check tuning.
24	Excess Velocity Error	Velocity error limit was exceeded.	- Increase time or size of allowable error. - Reduce acceleration. - Check tuning.
25	Reserved		Call your local Allen-Bradley representative.
26	User-Specified Velocity Fault	User specified velocity level was exceeded.	Increase to a less restrictive setting.
27-28	Reserved		Call your local Allen-Bradley representative.
29	Encoder Output Frequency Exceeded	Encoder output frequency exceeds the maximum user specified value. This only applies when the encoder output mode is software.	- Increase the Output Encoder Limit parameter. - Increase the encoder output divider parameter.
30-33	Reserved		Call your local Allen-Bradley representative.
34	Ground Fault	Wiring error.	Check motor power wiring.
		Motor internal ground short.	Replace motor.
		Internal malfunction.	Disconnect motor power cable from drive and enable drive with current limit set to 0 . If fault remains, call your A-B representative. If fault clears, then a wiring error or motor internal problem exists.
35	Precharge Fault	Low AC input voltage.	Check input AC voltage on all phases.
36	Power Circuitry Overtemperature	Excessive heat exists in the power circuitry.	- Reduce acceleration rates. - Reduce duty cycle (ON/OFF) of commanded motion. - Increase time permitted for motion. - Use larger Ultra5000 and motor. - Check tuning.

Error Code	Problem or Symptom	Possible Cause(s)	Action/Solution
37	AC Line Loss	One or more phases of the input AC power is missing.	Check input AC voltage on all phases.
38	Reserved	Call your local Allen-Bradley representative.	
39	Self-sensing Commutation Startup Error	Motion required for self-sensing startup commutation was obstructed.	- Verify that there are no impediments to motion at startup, such as hard limits. - Increase self-sensing current if high friction or load conditions exist. - Check motor or encoder wiring using wiring diagnostics.
$40-57$	Reserved	Call your local Allen-Bradley representative.	
58	Excess CPU Load	Remove user function from sequencer or reduce size of user function.	
$59-99$	Reserved	Call your local Allen-Bradley requencesentative.	

Troubleshooting for DeviceNet Drives

DeviceNet Module Status LED

Use the table below for troubleshooting the DeviceNet Module Status LED on your Ultra5000 (2098-IPD-xxx-DN, or -HVxxxx-DN).

If the Module Status LED is:	Status is:	Potential Cause is:	Possible Resolution is:
Off	Not powered	No power	There is no power going to the device.
Steady-Green	Operational	Normal operation	Normal operation - no action needed.
Flashing-Green	Device is in stand-by	Processing or waiting for input	Normal operation - no action needed.
Flashing-Red	Recoverable fault	Not operational	Power cycle or reset the drive.
Steady-Red	Unrecoverable fault	Drive problem	Check drive for power-up error. Replace drive.
Flashing-Red/ Green	Self testing	Self-test in progress	The device is in self test, wait.

DeviceNet Network Status LED

Use the table below for troubleshooting the DeviceNet Network Status LED on your Ultra5000 (2098-IPD-xxx-DN, or -HVxxxx-DN).

If the Network Status LED is:	Status is:	Potential Cause is:	Possible Resolution is:		
Off	- Not powered - Not on-line	- No power going to the device - Failed Duplicate MAC ID check	1. Check the Module Status LED to verify that the drive is powered. 2. Check that one or more nodes are communicating on the network. 3. Check that at least one other node on the network is operational and the data rate is the same as the drive.		
Flashing-green	- On-line - Not connected	- Passed Duplicate MAC ID check - No connection established	No action is needed. The LED is flashing to signify that there are no open communication connections between the drive and any other device. Any connection (I/O or explicit message) made to the drive over DeviceNet will cause the LED to stop flashing and remain Steady-ON for the duration of any open connection.		
Steady-green	- On-line - Connected	One or more connections established	No action needed. This condition is normal.		
Flashing-red	- On-line	I/O connection timed out	1. Re-initiate I/O messaging by the master controller. 2. Reduce traffic or errors on the network so that messages can get through within the necessary time frame.		
Steady-red	Network Failure	• Failed Duplicate			
MAC ID check				\quad	1. Ensure that all nodes have unique addresses.
:---					
2. If all node addresses are unique, examine network for correct media					
installation.					

Node Problems

Give particular attention to the task of setting initial addresses and data rates. Survey the network to ensure all assignments are known. Some nodes can be logically assigned to a group of devices, but physically located away from those devices. One incorrect node can cause other nodes to appear to be Bus-off (Steady-Red LED). If a node goes Bus-off and the device is reset only to go Bus-off again, the problem is likely not with the device, but rather the setting of the address, data rate, or a network-wide problem related to topology, grounding, intermittent power/data connections, or electrical noise. If a scanner goes Bus-off, nodes will not reallocate (Flashing-green or red) even if they are functioning correctly.

Device Failure - LED Status Check

A Steady-Red Module Status LED can mean an error. If the Network Status LED goes Steady-Red at power-up, it could mean there is a Duplicate MAC ID. The user response is to test all devices for unique addresses. If a Steady-Red LED remains on after the Duplicate MAC ID test shows all devices to have a unique node address, it means a Bus-off error. Do the following:

1. Check data rate settings.
2. If symptom persists, replace node address (with another address and correct data rate).
3. If symptom persists, replace tee tap.
4. If symptom persists, check topology.
5. If symptom persists, check power for noise with oscilloscope or power disturbance analyzer.

Scanner Problems

If using a scanner, check the scan list, data rate, and addresses of devices. Verify series and revision of the scanner is the latest. If the scanner is Bus-off, recycle the 24 V supply and then reset the scanner. If the scanner goes Bus-off again, the problem is some combination of:

- Defective node device
- Incorrect node data rate
- Bad network topology
- Faulty wiring
- Faulty scanner
- Faulty power supply
- Bad grounding
- Electrical noise

Power Supply Problems

If a single power supply is used, add up the current requirements of all devices drawing power from the network. This total should be considered the minimum current rating in selecting the power supply used. In addition check the:

- Length and current level in trunk and drop cables
- Size and length of the cable supplying power to the trunk
- Voltage measured at the middle and ends of the network
- Noise in network power measured with an oscilloscope

Cable Installation and Design Problems

Cable installation and design refers to the physical layout and connections on the network. Walk the network if possible to determine the actual layout and connections. Network management software displays only a logical record of the network. Ensure that you have a diagram of the physical layout and a record of the information from the tables below.

Cable Checks	Power Checks
Number of nodes.	Break the earth ground of the V - and Shield and verify $>1.0 \mathrm{Mohm}$ to frame ground with power supply off.
Individual drop lengths.	Use a multi-meter to check for short circuit between CAN_H and CAN_L, or CAN (H or L) to Shield, V- or V+.
Branched drop length.	Total power load and at its distribution points.
Cumulative drop length.	Spot check power for noise.
Total trunk length.	
Power supply cable length and gauge.	
Terminator locations and size.	

Adjusting the Physical Network Configuration

Ways to improve the efficiency of your physical network configuration include:

- Shortening the overall length of the cable system
- Moving the power supply in the direction of an overloaded cable section
- Moving devices from an overloaded cable section to a less loaded section
- Moving higher current loads closer to the power supply
- Adding another power supply to an overloaded network
- Moving the power supply from the end to the middle of the network

Specifications and Dimensions

Objectives

This appendix covers the following topics:

- Ultra5000 Specifications
- Dimensions

Ultra5000 Specifications \quad The following sections provide s General Power Specifications

2098-IPD-005-xx, -010-xx, and -020-xx

The table below lists general power specifications and requirements for the Ultra5000 230 V drives.

Specification	Description		
	$\begin{array}{\|l\|} \hline \text { 2098-IPD-005, } \\ \text { 2098-IPD-005-DN } \end{array}$	$\begin{aligned} & \text { 2098-IPD-010, } \\ & \text { 2098-IPD-010-DN } \end{aligned}$	$\begin{aligned} & \text { 2098-IPD-020, } \\ & \text { 2098-IPD-020-DN } \end{aligned}$
AC Input Voltage ${ }^{1}$	$100-240 \mathrm{~V}_{\text {rms }}$ Single Phase		
AC Input Frequency	$47-63 \mathrm{~Hz}$		
AC Input Current ${ }^{2}$ Nominal Maximum inrush (230V ac input)	$\begin{aligned} & 5 \mathrm{~A}_{\text {rms }} \\ & 100 \mathrm{~A} \text { (0-peak) } \end{aligned}$	$\begin{aligned} & 9 \mathrm{~A}_{\text {rms }} \\ & 100 \mathrm{~A}(0 \text {-peak }) \end{aligned}$	$\begin{aligned} & 18 \mathrm{~A}_{\text {rms }} \\ & 100 \mathrm{~A}(0 \text {-peak }) \end{aligned}$
Output Peak Current	7.5A (0-peak)	15A (0-peak)	30A (0-peak)
Continuous Output Current	2.5A (0-peak)	5A (0-peak)	10A (0-peak)
Energy Absorption Capability 115V ac input 230V ac input	125 Joules 51 Joules		
Continuous Power Output 115 V ac input 230V ac input	$\begin{array}{\|l\|l} 0.25 \mathrm{~kW} \\ 0.5 \mathrm{~kW} \end{array}$	$\begin{aligned} & 0.5 \mathrm{~kW} \\ & 1.0 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~kW} \\ & 2.0 \mathrm{~kW} \end{aligned}$

2098-IPD-030-xx, -075-xx, and -150-xx

The table below lists general power specifications and requirements for the Ultra5000 230 V drives.

Specification	Description		
	$\begin{array}{\|l\|} \hline \text { 2098-IPD-030, } \\ \text { 2098-IPD-030-DN } \end{array}$	$\begin{aligned} & \text { 2098-IPD-075, } \\ & \text { 2098-IPD-075-DN } \end{aligned}$	2098-IPD-150, 2098-IPD-150-DN
AC Input Voltage ${ }^{1}$	$100-240 V_{\text {rms }}$ Single Phase	$100-240 \mathrm{~V}_{\mathrm{rms}}$ Three Phase	
AC Input Frequency	$47-63 \mathrm{~Hz}$		
Main AC Input Current ${ }^{2}$ Nominal, Maximum inrush, 230V ac input	$\begin{aligned} & 28 \mathrm{~A}_{\mathrm{rms}} \\ & 50 \mathrm{~A}_{\mathrm{ms}} \end{aligned}$	$\begin{aligned} & 30 A_{r m s} \\ & 50 A_{r m s} \end{aligned}$	$\begin{aligned} & 46 A_{r m s} \\ & 68 A_{r m s} \end{aligned}$
Auxiliary AC Input Current Nominal, 115 V ac input Nominal, 230V ac input Maximum inrush, 115 V ac input ${ }^{3}$ Maximum inrush, 230 V ac input ${ }^{3}$	$\begin{aligned} & 1.0 A_{\text {rms }} \\ & 0.5 A_{\text {rms }} \\ & 47 \mathrm{~A}(0 \text {-peak }) \\ & 95 \mathrm{~A}(0 \text {-peak }) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~A}_{\text {rms }} \\ & 0.5 \mathrm{~A}_{\text {ms }} \\ & 47 \mathrm{~A}(0 \text {-peak }) \\ & 95 \mathrm{~A}(0 \text {-peak }) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~A}_{\text {rms }} \\ & 0.5 \mathrm{~A}_{\text {ms }} \\ & 47 \mathrm{~A}(0 \text {-peak }) \\ & 95 \mathrm{~A}(0 \text {-peak }) \end{aligned}$
Continuous Output Current	15A (0-peak)	35A (0-peak)	65A (0-peak)
Intermittent Output Current	30A (0-peak)	75A (0-peak)	150A (0-peak)
Internal Shunt Continuous power Peak power	$\begin{aligned} & 50 \mathrm{~W} \\ & 4.5 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~W} \\ & 10 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 180 \mathrm{~W} \\ & 18 \mathrm{~kW} \end{aligned}$
External Shunt Minimum resistance Continuous power Peak power	$\begin{aligned} & 30 \mathrm{hms} \\ & 2.4 \mathrm{~kW} \\ & 6 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { 16.5 Ohms } \\ & 4 \mathrm{~kW} \\ & 10 \mathrm{~kW} \end{aligned}$	90 hms 8 kW 19 kW
Energy Absorption Capability 115 V ac input 230 V ac input	203 Joules 96 Joules	321 Joules 151 Joules	563 Joules 265 Joules
Continuous Power Output 115 V ac input 230 V ac input	$\begin{aligned} & 1.5 \mathrm{~kW} \\ & 3 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 3.75 \mathrm{~kW} \\ & 7.5 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{~kW} \\ & 15 \mathrm{~kW} \end{aligned}$

[^9]
2098-IPD-HV030-xx, -HV050-xx, -HV100-xx, -HV150-xx, and -HV220-xx

The table below lists general power specifications and requirements for the Ultra5000 460 V drives.

Specification	Description				
	2098-IPD-HV030 and 2098-IPD-HV030-DN	$\begin{gathered} \text { 2098-IPD-HV050 } \\ \text { and } \\ \text { 2098-IPD-HV050-DN } \end{gathered}$	$\begin{gathered} \text { 2098-IPD-HV100 } \\ \text { and } \\ \text { 2098-IPD-HV100-DN } \end{gathered}$	$\begin{aligned} & \text { 2098-IPD-HV150 } \\ & \text { and } \\ & \text { 2098-IPD-HV150-DN } \end{aligned}$	$\begin{gathered} \text { 2098-IPD-HV220 } \\ \text { and } \\ \text { 2098-IPD-HV220-DN } \end{gathered}$
AC Input Voltage ${ }^{1,2}$	$\begin{aligned} & 230-480 V_{\text {rss }} \\ & \text { Three Phase } \end{aligned}$				
AC Input Frequency	47-63 Hz				
Main AC Input Current ${ }^{3}$ Nominal, 460 V ac input Maximum inrush, 460 V ac input	$\begin{aligned} & 4 \mathrm{~A}_{\mathrm{rms}} \\ & 6 \mathrm{~A}_{\mathrm{rms}} \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A}_{\mathrm{rms}} \\ & 6 \mathrm{~A}_{\mathrm{rms}} \end{aligned}$	$\begin{aligned} & 14 \mathrm{~A}_{\mathrm{rms}} \\ & 6 \mathrm{~A}_{\mathrm{rms}} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~A}_{\mathrm{rms}} \\ & 6 \mathrm{~A}_{\mathrm{rms}} \end{aligned}$	$\begin{aligned} & 28 \mathrm{~A}_{\mathrm{rms}} \\ & 6 \mathrm{~A}_{\mathrm{rms}} \end{aligned}$
Auxiliary AC Input Current Nominal, 230 V ac input Nominal, 360V ac input Nominal, 480V ac input Maximum inrush, 230 V ac input ${ }^{4}$ Maximum inrush, 480 V ac input ${ }^{4}$	$\begin{aligned} & 0.55 \mathrm{~A}_{\text {rs }} \\ & 0.35 \mathrm{~A}_{\text {ms }} \\ & 0.25 \mathrm{~A}_{\mathrm{ms}} \\ & 47 \mathrm{~A}(0-\mathrm{-pak}) \\ & 68 \mathrm{~A}(0 \text {-peak }) \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{~A}_{\text {rs }} \\ & 0.35 \mathrm{~A}_{\text {ms }} \\ & 0.25 \mathrm{~A}_{\text {rms }} \\ & 47 \mathrm{~A}(0-\mathrm{-pak}) \\ & 68 \mathrm{~A}(0-\text {-peak }) \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{~A}_{\text {rs }} \\ & 0.35 \mathrm{~A}_{\text {ms }} \\ & 0.25 \mathrm{~A}_{\mathrm{ms}} \\ & 47 \mathrm{~A}(0-\mathrm{-pak}) \\ & 68 \mathrm{~A}(0 \text {-peak }) \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{~A}_{\text {rs }} \\ & 0.35 \mathrm{~A}_{\text {ms }} \\ & 0.25 \mathrm{~A}_{\text {ms }} \\ & 47 \mathrm{~A}(0-\mathrm{opak}) \\ & 68 \mathrm{~A}(0 \text {-peak }) \end{aligned}$	$\begin{aligned} & 0.55 \mathrm{~A}_{\text {ms }} \\ & 0.35 \mathrm{~A}_{\text {ms }} \\ & 0.25 \mathrm{~A}_{\mathrm{ms}} \\ & 47 \mathrm{~A}(0-\mathrm{-peak}) \\ & 68 \mathrm{~A}(0 \text {-peak }) \end{aligned}$
Continuous Output Current	7A (0-peak)	11A (0-peak)	23A (0-peak)	34A (0-peak)	47A (0-peak)
Intermittent Output Current	14A (0-peak)	22A (0-peak)	46A (0-peak)	68A (0-peak)	94A (0-peak)
Internal Shunt Continuous power Peak power	$\begin{aligned} & 100 \mathrm{~W} \\ & 5.3 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~W} \\ & 5.3 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 200 \mathrm{~W} \\ & 16 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 200 \mathrm{~W} \\ & 25.6 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~W} \\ & 32 \mathrm{~kW} \end{aligned}$
External Shunt Minimum resistance Continuous power Peak power	$\begin{aligned} & 120 \text { Ohms } \\ & 3 \mathrm{~kW} \\ & 5.3 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 120 \text { Ohms } \\ & 5 \mathrm{~kW} \\ & 5.3 \mathrm{~kW} \end{aligned}$	40 Ohms 10 kW 16 kW	$\begin{aligned} & 250 \mathrm{hms} \\ & 15 \mathrm{~kW} \\ & 25.6 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 20 \mathrm{hms} \\ & 22 \mathrm{~kW} \\ & 32 \mathrm{~kW} \end{aligned}$
Energy Absorption Capability 230 V ac input with 230 V motor 230 V ac input with 460 V motor 460 V ac input	58 Joules 517 Joules 219 Joules	58 Joules 517 Joules 219 Joules	88Joules 776Joules 329 Joules	117 Joules 1034 Joules 439 Joules	234 Joules 2069 Joules 878Joules
Continuous Power Output 230 V ac input 460 V ac input	$\begin{aligned} & 1.5 \mathrm{~kW} \\ & 3.0 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~kW} \\ & 5.0 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~kW} \\ & 10 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{~kW} \\ & 15 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 11 \mathrm{~kW} \\ & 22 \mathrm{~kW} \end{aligned}$

1 Specification is for nominal voltage. The absolute limits are $\pm 10 \%$, or $207-528 \mathrm{~V}_{\text {rms }}$.
2 The 2098-IPD-HVxxx-xx drives can be powered with 230-240 Vrms in order to be used in conjunction with motors designed for 230V operation. In such cases, the voltage levels used for shunting and DC bus overvoltage limits are adjusted to be compatible with the voltage limit of the motor.
3 The 2098-HV $x x x-x x(460 \mathrm{~V})$ drives are limited to three contactor cycles per minute.
${ }^{4} 400 \mu$ s half wave sine, inrush current is processor controlled via soft start circuitry.

Physical and Environmental

The table below lists physical and environmental specifications and requirements.

Specification	Description
Weight 2098-IPD-005 2098-IPD-010 2098-IPD-020 2098-IPD-030 2098-IPD-075 2098-IPD-150 2098-IPD-005-DN 2098-IPD-010-DN 2098-IPD-020-DN 2098-IPD-030-DN 2098-IPD-075-DN 2098-IPD-150-DN 2098-IPD-HV030 2098-IPD-HV050 2098-IPD-HV100 2098-IPD-HV150 2098-IPD-HV220 2098-IPD-HV030-DN 2098-IPD-HV050-DN 2098-IPD-HV100-DN 2098-IPD-HV150-DN 2098-IPD-HV22O-DN	 Kg Lbs 1.77 (3.9) 2.07 (4.55) 2.05 (4.51) 6.16 (13.58) 9.23 (20.35) 13.96 (30.78) 2.11 (4.7) 2.41 (5.3) 2.39 (5.3) 6.55 (14.43) 9.62 (21.20) 14.35 (31.63) 8.55 (18.8) 8.55 (18.8) 10.44 (22.96) 10.44 (22.96) 14.1 (31.0) 8.89 (19.6) 8.89 (19.6) 10.78 (23.72) 10.78 (23.72) 14.44 (31.77)
Operating Temperature	$0^{0} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Humidity	5\% to 90\% non-condensing
Altitude	$1500 \mathrm{~m}(5000 \mathrm{ft})$ Derate 3% for each 300 m above 1500 m
Vibration Operating/Non-operating	10 to $2000 \mathrm{~Hz}, 2 \mathrm{~g}$ peak, 0.015 in . maximum displacement
Shock Non-operating	15 g 11 ms half sine
UL Listed to U.S. and Canadian safety standards	UL 508 C File E145959

Power Dissipation

The maximum power losses Ultra5000 are shown below to help in sizing an enclosure and any required ventilation. Typical heat losses can run approximately one-half maximum power losses.

Catalog Number	Maximum Loss (Watts)
2098-IPD-005, 005-DN	$48+$ dissipative shunt
2098-IPD-010, -010-DN	$48+$ dissipative shunt
2098-IPD-020, -020-DN	$50+$ dissipative shunt
2098-IPD-030, -030DN	$150+$ dissipative shunt
2098-IPD-075, -075DN	$300+$ dissipative shunt
2098-IPD-150, -150DN	$500+$ dissipative shunt
2098-IPD-HV030, -030-DN	$175+$ dissipative shunt
2098-IPD-HV050, -050-DN	$175+$ dissipative shunt
2098-IPD-HV100, -100-DN	$350+$ dissipative shunt
2098-IPD-HV150, -150-DN	$350+$ dissipative shunt
2098-IPD-HV220, -220-DN	$600+$ dissipative shunt

User Programming

The table below lists physical and programming specifications.

Specification	Description
Language	Compiled ANSI C subset with Library of Motion Functions
Programming Environment	Full-featured Color Syntax Editor and C Compiler Integrated with Ultraware
Operating System	Real-time, multi-tasking, field upgradable flash
User Program Memory	512 Kbytes
	Flash Memory, 100,000 Write Cycles
Non-Volatile Memory	16 Kbytes (approximately 4000 non-volatile user variables)
	nvSRAM (High speed SRAM/EEPROM)

Control

The table below lists control specifications.

Specification	Description
Processor	Texas Instruments TMS320C32 32 Bit Floating Point Digital Signal Processor
Clock Speed	60 MHz
Commutation	3 Phase Sinusoidal, Space Vector Modulated (SVM)
Current Loop	SVM -125μ sec update rate
Velocity Loop	Digital PI - 250μ sec update rate
Position Loop	Digital PI - 500μ sec update rate
Position Range	32 -bit signed
Velocity Range	32 -bit floating point
Acceleration Range	32-bit floating point
Electronic Gearing	64 -bit signed

Inputs and Outputs

The table below lists I/O specifications.

Specification	Description
General Purpose Digital Inputs	16 Optically Isolated 12-24 Volt Inputs
Inputs/Outputs - Sinking/Sourcing Selection	Software Selectable as a Group to be Active High, Current Sinking or Active Low, Current Sourcing
General Purpose Digital Outputs	7 Optically Isolated 12-24 Volt Outputs - 50 Milliamperes Maximum
General Purpose Relay Output	1 Normally Open Relay - 30 Volts dc Maximum, 1A Maximum Current
General Purpose I/0 Response	100 нsec
High Speed Input Response	<1 цsec (Inputs 1 and 2)
Position Capture Response	<1 нsec (Input 1, Input 2, Motor Encoder Index, and Auxiliary Encoder Index)
General Purpose Analog Inputs	212 -Bit Analog to Digital Converters (+/- 10V, single-ended)
General Purpose Analog Outputs	212 -Bit Digital to Analog Converters (+/- 10V, $+/-2 m A, ~ s i n g l e-e n d e d) ~$

Communications

The table below lists the communication specifications for serial communications and the optional DeviceNet interface.

Specification	Description
Serial:	Two RS-232/RS-422/RS-485
Ports	$1200,2400,4800,9600,19200$, and 38400 baud
Baud Rates	60 mA
DeviceNet (option):	$125 \mathrm{kps}, 250 \mathrm{kps}$, and 500 kps
Power Consumption from Network	$01-63$
Data Rates	Explicit, polled I/0
Node Addresses	

Motor Feedback

The table below lists motor feedback specifications.

Specification	Description
Encoder Types	Incremental, Sine/Cosine, Intelligent, and Absolute
Maximum Input Frequency	100 kHz (Sine/Cosine Input)
	2.5 MHz (TTL Input) per channel
Commutation Startup	Hall Sensor

Auxiliary Feedback

The table below lists auxiliary feedback specifications.

Specification	Description
Input Modes	A quad B
Input Types	Differential
Maximum Signal Frequency	2.5 MHz

Connectors

The table below lists connector specifications. Refer to Appendix C for a list of mating connectors available from other suppliers.

Connector	Specification	Description
CN1A	Digital I/O Connector	28 Position Plugable Spring Clamp Terminal Block
CN1B	Auxiliary Feedback/Analog I/O Connector	14 Position Plugable Spring Clamp Terminal Block
CN2	Motor Feedback Connector	15 Position High Density Female D-Sub Connector
CN3A and CN3B	Serial Port Connectors	9 Position Female D-Sub Connector
TB1 and TB2	Main and Auxiliary AC, DC Bus, Motor Power, and Shunt Connectors	Screw Terminal Block

Dimensions
The following diagrams show the dimensions and mounting hole locations for the Ultra5000 drives.

Note: The DeviceNet Interface is an add-on feature available with all Ultra5000 drives. Overall dimensions are provided for each Ultra5000 drive that include and exclude the DeviceNet interface.

Figure A. 1 Dimensions and Mounting Diagram (2098-IPD-005-xx)

Note: Inch dimensions are shown in brackets

Figure A. 2
Dimensions and Mounting Diagram
(2098-IPD-010-xx and 2098-IPD-020-xx)

Fan only on 2 kW units

Note: Inch dimensions are shown in brackets

Figure A. 3
Dimensions and Mounting Diagram 2098-IPD-030-xx

Note: Inch dimensions are shown in brackets

Figure A. 4
Dimensions and Mounting Diagram 2098-IPD-075-xx

Note: Inch dimensions are shown in brackets

Figure A. 5
Dimensions and Mounting Diagram 2098-IPD-150-xx

Note: Inch dimensions are shown in brackets

Figure A. 6
Dimensions and Mounting Diagram
2098-IPD-HV030-xx and 2098-IPD-HV050-xx

Note: Inch dimensions are shown in brackets

Figure A. 7
Dimensions and Mounting Diagram 2098-IPD-HV100-xx and 2098-IPD-HV150-xx

Note: Inch dimensions are shown in brackets

Figure A. 8
Dimensions and Mounting Diagram 2098-IPD-HV220-xx

Note: Inch dimensions are shown in brackets

Interconnect Diagrams

Objectives

This appendix contains the following interconnect diagrams:

- Ultra5000 and Motor Cable Diagrams
- Ultra5000 Power Wiring Diagrams
- Using an Emergency Stop Contactor
- Grounding for Ultra5000 CE Requirements
- Ultra5000 Shunt Module Information

Ultra5000 and Motor Cable Diagrams

This section provides information to assist you in wiring your MP, N, H/F, W, and Y-Series motors when connecting to your Ultra5000.

Ultra5000 Drive and Motor Cable Combinations

The following figures describe the motor power, feedback, and interface cables you will need for your specific Ultra5000 and motor combination.

Figure B. 1
Ultra5000 Motor/Drive Cable Connections

Motor Power Cables

500W, 1 kW, 2 kW Ultra5000 to H-Series Motors 500W, 1 kW, 2 kW Ultra5000 to H-Series Motors 15 kW Ultra5000 to H-Series Motors 15 kW Ultra5000 to H-Series Motors 2 or 3 kW Ultra5000 to H and F-Series Motors 2 or 3 kW Ultra5000 to H and F-Series Motors 7.5 kW Ultra5000 to H and F-Series Motors 7.5 kW Ultra5000 to H and F-Series Motors 15 kW Ultra5000 to H and F-Series Motors 15 kW Ultra5000 to H and F-Series Motors $500 \mathrm{~W}, 1 \mathrm{~kW}, 2 \mathrm{~kW}$ UItra5000 to MP-Series Motors 2 or 3 kW Ultra5000 to MP-Series Motors 7.5 kW Ultra5000 to MP-Series Motors $500 \mathrm{~W}, 1 \mathrm{~kW}, 2 \mathrm{~kW}$ Ultra5000 to N-Series Motors 500W, 1 kW, 2 kW Ultra5000 to N-Series Motors 500W, 1 kW, 2 kW Ultra5000 to Y-Series Motors

Feedback Cables

Ultra5000 CN2 port to H-Series Motors, RA
Flying Leads on drive-end to H -Series Motor, RA Ultra5000 CN2 port to H and F-Series Motors Flying Leads on drive-end to H and F -Series Motor Ultra5000 CN2 port to H and F-Series Motors, RA Ultra5000 CN2 port to H and F-Series Motors, RA, skewed Ultra5000 CN2 port to MP-Series Motors
Flying Leads on drive-end to MP-Series Motor Ultra5000 CN2 port to N-Series Motors Flying leads on drive-end to N -Series Motors Ultra5000 CN2 port to N-Series Motors, RA
Ultra5000 CN2 port to N-Series Motors, RA, skewed Ultra5000 CN2 port to N-Series Motors, RA, skewed
Flying leads on drive-end to N -Series Motors, RA, skewed Flying leads on drive-end to N -Series Motors, RA Ultra5000 CN2 port to Y-Series Motors
Flying Leads on drive-end to Y-Series Motor
Drive Feedback Cable (CN2) to flying leads, straight

Interface Cables and Kits

Ultra5000 CN2 port drive mounted breakout board CN2 Breakout Board Kit (see description on page C-8 CN2 Breakout Board Cable (see description on page C-8 Ultra5000 CN3 port drive mounted breakout board Ultra5000 CN3 port to personal computer

Catalog Number
2090-UXNFBH-Rxx 2090-UXNFDH-Rxx 2090-UXNFBHF-Sxx 2090-UXNFDHF-Sxx 2090-UXNFBHF-Rxx 2090-UXNFBHF-Kxx 2090-UXNFBMP-Sxx 2090-UXNFDMP-Sxx 2090-UXNFBN-Sxx 2090-UXNFDN-Sxx $\frac{\text { 2090-UXNFBN-Rxx }}{2090-U X N F B N-K x x}$ 2090-UXNFDN23-Kxx 2090-UXNFDN23-Kxx 2090-UXNFDN-Rxx 2090-UXNFBY-Sxx 2090-UXNFDY-Sxx 2090-UXNFM-Sxx

Catalog Number

2090-UXBB-DM15 2090-UXBK-D15xx 2090-UXBC-D15xx 2090-UXBB-DM09 2090-UXPC-D09xx

Standard cable lengths are; $01,03,09,15,30$ meters ($3.3,9.8,29.5,49.2,98.5 \mathrm{ft}$). Where xx is the length in meters. 2090-UXBC-D15xx is limited to $1,3,9$ or 15 meters ($3.3,9.8,29.5$, or 49.2 ft).
e.g., Length of $\underline{2090-U X B B-D M 15 ~ i s ~ a ~ f i x e d ~} 15$ meters (listed as Ultra5000 CN2 port drive mounted breakout board under Interface Cables and Kits).

Ultra5000 to Motor Interconnect Diagrams

Figure B. 2
Ultra5000 to 1326AB-Bxxxx-M2L or -S2L Motor Configuration (mating connector)

Figure B. 3
Ultra5000 to 1326AB-Bxxxx-M2L or -S2L Motor Configuration (flying leads)

Figure B. 4
Ultra5000 to MP-Series Motor Configuration (mating connector)

Figure B. 5
Ultra5000 to MP-Series Motor Configuration
(flying leads)

Figure B. 6
Ultra5000 to N-Series Motor Configuration (mating connector)

Figure B. 7
Ultra5000 to \mathbf{N}-Series Motor Configuration (flying leads)

Figure B. 8
Ultra5000 to H -, and F-Series Motor Configuration (mating connector)

Figure B. 9
Ultra5000 to H -, and F -Series Motor Configuration (flying leads)

Figure B. 10
Ultra5000 to W-Series Motor Configuration (mating connector)

Figure B. 11
Ultra5000 to W-Series Motor Configuration (flying leads)

Figure B. 12
Ultra5000 to Y-Series Motor Configuration (mating connector)

Figure B. 13
Ultra5000 to Y-Series Motor Configuration (flying leads)

Ultra5000 Power Wiring
Diagrams

This section provides information to assist you with AC input and motor power wiring to your Ultra5000 drive.

Figure B. 14
Typical Power Wiring of Ultra5000 System
2098-IPD-005-xx, -010-xx, and -020-xx

Figure B. 15
Typical Power Wiring of Ultra5000 System
2098-IPD-030-xx

Figure B. 16
Typical Power Wiring of Ultra5000 System
2098-IPD-075-xx

Figure B. 17
Typical Power Wiring of Ultra5000 System
2098-IPD-150-xx

Figure B. 18
Typical Power Wiring of Ultra5000 System 2098-IPD-HVxxx-xx

Using an Emergency Stop Contactor

Some applications require that a contactor be inserted between the motor and Ultra5000 for emergency stop purposes. To determine if this is necessary, perform a hazard analysis of the machine. If used, the contactor must not simply break the motor current, it must switch a 3-phase resistive load in parallel with the motor windings. The three resistors provide dynamic braking and a category zero stop. The resistors also prevent continuous arcing at the main contacts when breaking DC currents, such as when the motor is at stall.

It is important to sequence the E-stop string to disable the drive prior to or at the same time the contactor is released. Conversely, upon power-up the contactor must be fully engaged before the drive is enabled. Use an auxiliary contact on the contactor for the drive enable circuit for sequencing.

ATTENTION	To avoid personal injury and/or equipment damage, do not simply break the motor current. This can result in very high voltages due to mor inductance, prolonged arcing in the contactor, and eventually can cause fire in extreme cases.

Shield and ground cable connection methods are shown in Figure B. 19 .

ATTENTION

Implementation of safety circuits and risk assessment is the responsibility of the machine builder. Please reference international standards EN1050 and EN954 estimation and safety performance categories. For more information refer to Understanding the Machinery Directive, publication SHB-900.

Figure B. 19
Emergency Stop Contactor Wiring

1 Exposed power wiring conductors that are not shielded are a source of RFI noise. Keep exposed conductors as short as possible and isolated from sensitive devices and wiring.

2 The safety ground (GND) and shield connections are permanently connected. This is essential for electrical safety.

3 Unbraid all cable shields and bond together, connecting directly to the grounded terminal or stud. Do not use the shield drain wire for this bonded connection.

IMPORTANT

The safety ground is not connected to local ground at the point where the contactor is inserted in the lines, but the shield is. This is done for EMC reasons.

Grounding for Ultra5000 CE Requirements

This section provides information to assist you in complying with CE requirements. Figure B. 20 briefly outlines Ultra 5000 CE requirements. Refer to Complying with European Union Directives on page 1-1 for information on how to determine compliance of specific products.
Figure B. 20
Ultra5000 CE Requirements

IMPORTANT
All AC power in the cabinet must be filtered to reduce EMI.

High voltage exists in AC line filters. The filter must be grounded properly before applying power. Filter capacitors retain high voltages after power removal.

Before handling the equipment, voltages should be measured to determine safe levels.
Failure to observe this precaution could result in personal injury.

Ultra5000 Shunt Module Information

This section directs you to information sources for wiring an active or passive shunt module to your Ultra5000 drive.

300 Watt Active Shunt Module

Use the 2090-UCSR-A300 active shunt module with the Ultra5000 (2098-IPD-005-xx, -010-xx, and -020-xx) drives.

Use shielded, high temperature $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right), 600 \mathrm{~V}, 2.5-4.0 \mathrm{~mm}^{2}$ (12-14 AWG), $3.05 \mathrm{~m}(10 \mathrm{ft}$) maximum, copper wire. Follow one of the methods given below to reduce the effects of EMI noise:

- Install wires using twisted pairs (two turns per foot minimum), as shown in the figure above. Keep unshielded wires as short as possible.
- Use shielded, twisted cable (ground shield at shunt and drive).
- Use shielded metal conduit (ground conduit at shunt and drive).

For more information, refer to the 300 Watt Active Shunt Regulator Installation Instructions, publication 2090-IN002.

200 Watt Passive Shunt Module

A 2090-UCSR-P200 passive shunt module can be used with the 230 V Ultra5000 drive (2098-IPD-030-xx).

Use shielded, high temperature $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right), 600 \mathrm{~V}, 2.5 \mathrm{~mm}^{2}(14$ AWG), $3.05 \mathrm{~m}(10 \mathrm{ft})$ maximum, copper wire. Follow one of the methods given below to reduce the effects of EMI noise:

- Install wires using twisted pairs (two turns per foot minimum), as shown in the figure above. Keep unshielded wires as short as possible.
- Use shielded, twisted cable (ground shield at shunt and drive).
- Use shielded metal conduit (ground conduit at shunt and drive).

For more information, refer to the 200 Watt Passive Shunt Module Installation Instructions, publication 2090-IN003.

900 Watt Passive Shunt Module

Use the 2090-UCSR-P900 passive shunt module with the Ultra5000 drives (2098-IPD-075-xx or 2098-IPD-150-xx).

Use shielded, high temperature $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right), 600 \mathrm{~V}, 10 \mathrm{~mm}^{2}$ (8 AWG), $3.05 \mathrm{~m}(10 \mathrm{ft})$ maximum, copper wire. Follow one of the methods given below to reduce the effects of EMI noise:

- Install wires using twisted pairs (two turns per foot minimum), as shown in the figure above. Keep unshielded wires as short as possible.
- Use shielded, twisted cable (ground shield at shunt and drive).
- Use shielded metal conduit (ground conduit at shunt and drive).

For more information, refer to the 900 Watt Passive Shunt Module Installation Instructions, publication 2090-IN001.

2090 Passive Shunt Module

A 2090-SR $x x x-x x$ passive shunt module can be used with 460 V Ultra5000 drives (2098-IPD-HV030-xx, -HV050-xx, -HV100-xx, $-\mathrm{HV} 150-x x$, and $-\mathrm{HV} 220-x x$) operating with 460 V or 230 V input power.

Note: Fusing on the 2090-SR $x x x-x x$ passive shunt module must be changed to accommodate 230 V input power.

Use shielded, high temperature $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right), 600 \mathrm{~V}, 6 \mathrm{~mm}^{2}(10$ AWG), 3.05 m (10 ft) maximum, braided copper wire to connect between the drive's TB2-1 and TB2-3 external shunt terminals and the shunt module terminals. Follow one of the methods below to reduce the effects of EMI noise:

- Install wires using twisted pairs (two turns per foot minimum). Keep unshielded wires as short as possible.
- Use shielded, twisted cable (ground shield at shunt and drive).
- Use shielded metal conduit (ground conduit at shunt and drive).

For more information, refer to the 2090 Series Passive Shunts Installation Instructions, publication 2090-IN004.

Catalog Numbers and Accessories

Chapter Objectives
This appendix lists the Ultra5000 drives and accessory items in tables by catalog number providing detailed descriptions of each component. This appendix describes catalog numbers for:

- Ultra5000 Drives
- Ultraware Software
- AC Line Filters
- External Shunt Kits
- Motor Power Cables
- Motor Feedback Cables
- Ultra5000 Interface Cables
- Break Out Boards, Cables, and Kits
- Mating Connector Kits

Contact your local Allen-Bradley sales office for additional information. Refer to the Motion Control Selection Guide, publication GMC-SG001, for details on products.

Ultra5000 Drives

Use the following table to identify Ultra5000 240V drives with ratings of $500 \mathrm{~W}, 1 \mathrm{~kW}$, and 2 kW .

Description	Catalog Number
Ultra5000 Intelligent Positioning Drives	$2098-I P D-005$,
	$2098-$ PD-010,
	$2098-$ IPD-020
Ultra5000 Intelligent Positioning Drives with DeviceNet	$2098-I P D-005-D N$,
	$2098-I P D-010-D N$,
	$2098-I P D-020-D N$

Use the following table to identify Ultra5000 240 V drives with ratings of 3 kW , 7.5 kW , and 15 kW .

Description	Catalog Number
Ultra5000 Intelligent Positioning Drives	$2098-I P D-030$,
	$2098-$ PD-075,
	$2098-I P D-150$
Ultra5000 Intelligent Positioning Drives with DeviceNet	$2098-I P D-030-D N$,
	$2098-I P D-075-D N$,
	$2098-I P D-150-D N$

Use the following table to identify Ultra5000 460 V drives with ratings of $3 \mathrm{~kW}, 5 \mathrm{KW}, 10 \mathrm{~kW}, 15 \mathrm{~kW}$, and 22 kW .

Description	Catalog Number
Ultra5000 Intelligent Positioning Drives	$2098-I P D-H V 030$,
	$2098-\mathrm{PDD}-\mathrm{HV} 050$,
	$2098-\mathrm{PD}-\mathrm{HV} 100$,
	$2098-\mathrm{PD}-\mathrm{HV} 150$,
	$2098-\mathrm{IPD}-\mathrm{HV} 220$
Ultra5000 Intelligent Positioning Drives with DeviceNet	$2098-\mathrm{IPD}-\mathrm{HV} 030-\mathrm{DN}$,
	$2098-\mathrm{PDD}-\mathrm{HV} 050-\mathrm{DN}$,
	$2098-\mathrm{PD}-\mathrm{HV} 100-\mathrm{DN}$,
	$2098-\mathrm{PD}-\mathrm{HV} 150-\mathrm{DN}$,
	$2098-\mathrm{IPD}-\mathrm{HV} 220-\mathrm{DN}$

Ultraware Software

The Ultra5000 drives are configured using Ultraware. Ultraware is a Windows ${ }^{\circledR}$ based application that allows drive configuration to be done off-line and saved to disk.

Description	Catalog Number
Ultraware Software	2098-UWCPRG

AC Line Filters

Use the following table to identify the AC Line Filter for your application.

Description	AC Line Filter Fuse Block	Roxburgh Part Number	Catalog Number
AC Line Filter (6 Amp, Single phase)	6 Amp	MIF06	2090-UXLF-106
AC Line Filter (10 Amp, Single phase)	10 Amp	MIF10	2090-UXLF-110
AC Line Filter (23 Amp, Single phase)	23 Amp	MIF23	2090-UXLF-123
AC Line Filter (36 Amp, Single phase)	36 Amp	MDF36	2090-UXLF-136
AC Line Filter (50 Amp, Single phase)	50 Amp	MDF50	2090-UXLF-150
AC Line Filter (36 Amp, Three phase)	36 Amp	MDF336	2090-UXLF-336
AC Line Filter (50 Amp, Three phase)	50 Amp	MDF350	2090-UXLF-350
AC Line Filter (70 Amp, Three phase)	70 Amp	MDF370	2090-UXLF-370
AC Line Filter (23 Amp, Three phase, 480V)	23 Amp	MIF323	2090-UXLF-HV323
AC Line Filter (30 Amp, Three phase, 480V)	30 Amp	MIF330	2090-UXLF-HV330
AC Line Filter (50 Amp, Three phase, 480V)	50 Amp	MIF350	2090-UXLF-HV350

External Shunt Kits

External shunts are available for use with Ultra5000 drives. Refer to Related Documentation on page P-3 to locate Installation Instructions for these shunts.

Use the following tables to identify external shunt kits available for Ultra5000 drives. Refer to Ultra5000 Shunt Module Information on page B-23 for basic wiring guidelines.

If your drive is:	You may use this shunt	Catalog Number
2098-IPD-005, -005-DN	300 Watt Active Shunt Module with 300 Watt Active Shunt Ferrites	2090-UCSR-A300 ${ }^{1}$
2098-IPD-010, -010-DN		
2098-IPD-020, -020-DN		
2098-IPD-030, -030-DN	200 Watt Passive Shunt Module	2090-UCSR-P200
2098-IPD-075, -075-DN	900 Watt Passive Shunt Module	2090-UCSR-P900
2098-IPD-150, -150-DN		
$\begin{aligned} & \text { 2098-IPD-HV030, -HVO3O-DN } \\ & \text { 2098-IPD-HV050, -HV050-DN } \end{aligned}$	900 Watt 2090 Passive Shunt Module	2090-SR120-09 ${ }^{2}$
2098-IPD-HV100, -HV100-DN	900 Watt 2090 Passive Shunt Module	2090-SR040-09 ${ }^{2}$
2098-IPD-HV100, -HV100-DN	1800 Watt 2090 Passive Shunt Module	2090-SR040-18 ${ }^{2}$
2098-IPD-HV150, -HV150-DN	900 Watt 2090 Passive Shunt Module	2090-SR025-09 ${ }^{2}$
2098-IPD-HV150, -HV150-DN	1800 Watt 2090 Passive Shunt Module	2090-SR025-18 ${ }^{2}$
2098-IPD-HV220, -HV220-DN	3600 Watt 2090 Passive Shunt Module	2090-SR020-36 ${ }^{2}$

${ }^{1}$ A 300W Active Shunt may be labelled with the obsolete Catalog Number 1398-SR3AF.
${ }^{2}$ Refer to 2090 Series Passive Shunts on page C-5 for general specifications.

300 Watt Active Shunt Ferrites

Ferrites are used at both ends of the DC Bus wires for CE radiated emissions compliance. Use the following table to select a ferrite assembly.

Box shaped ferrite assembly in fully
enclosed nylon case. End ports are
surrounded with flexible spring flutes to
grip a range of cable diameters from. 125
to.500" (3.2 to 12.7mm).
FerriShield, Inc.
350 Fifth Avenue, Suite 7310 New York, NY 10118-7591
Mfg. Part/No.
D

2090 Series Passive Shunts

2090-Series of Passive Shunts compatible with 460V Ultra5000 drives (i.e., -HV) are shown in the following table:

Applicable Drives	Shunt Catalog No.	Shunt Ratings:			
		Resistance ${ }^{1}$	$\begin{aligned} & \text { Peak Power @ } \\ & \text { 460V } \end{aligned}$	$\begin{aligned} & \text { Peak Power @ } \\ & \text { 230V } \end{aligned}$	Power Continuous
$\begin{aligned} & \text { 2098-IPD-HVO30-xx } \\ & \text { 2098-IPD-HVO5O-xx } \end{aligned}$	2090-SR120-09	$120-148$ Ohms	5.3 kW	1.33 kW ${ }^{2}$	900W
2098-IPD-HV100-xx	2090-SR040-09	40-51 Ohms	16.0 kW	4.0 kW ${ }^{2}$	900W
2098-IPD-HV100-xx	2090-SR040-18	40-49 Ohms	16.0 kW	4.0 kW ${ }^{2}$	1800W
2098-IPD-HV150-xx	2090-SR025-09	25-32 Ohms	25.6 kW	6.4 kW ${ }^{2}$	900W
2098-IPD-HV150-xx	2090-SR025-18	25-31 Ohms	25.6 kW	6.4 kW ${ }^{2}$	1800W
2098-IPD-HV220-xx	2090-SR020-36	20-25 Ohms	32.0 kW	8.0 kW ${ }^{2}$	3600 W

${ }^{1}$ Tolerance $=+20 \%,-0 \%$
${ }^{2}$ Replacement of the 460 V fuse with the supplied 230V fuse kit is required to convert these shunts for use with Ultra Series HV drives operating on 230 V input power.

Cables

Use the following tables to identify motor power, feedback, interface, and brake cables for your Ultra5000. Length of cable $x x$ is in meters ($01,03,09,15$, and 30) unless otherwise noted.

Motor Power Cables

Applicable Drive(s)	Description	Catalog Number
2098-IPD-005, -010, -020	H-Series Motor Power Cable, non-flex, 16 AWG, right angle	2090-UXNPAH-16Rxx
	H and W-Series Motor Power Cable, non flex, 16 AWG, straight	2090-UXNPAH-16Sxx
	MP-Series Motor Power Cable, non flex, 16 AWG, straight	2090-UXNPAMP-16Sxx
	N-Series Motor Power Cable, non-flex, 16 AWG, right angle	2090-UXNPAN-16Rxx
	N-Series Motor Power Cable, non flex, 16 AWG, straight	2090-UXNPAN-16Sxx
	Y-Series Motor Power Cable, non flex, 16 AWG, straight	2090-UXNPAY-16Sxx
2098-IPD-020, -030, -HV030	H and F-Series Motor Power Cable, non-flex, 14 AWG, right angle	2090-UXNPAHF-14Rxx
	H, F and W-Series Motor Power Cable, non flex, 14 AWG, straight	2090-UXNPAHF-14Sxx
	MP-Series Motor Power Cable, non flex, 14 AWG, straight	2090-UXNPAMP-14Sxx
2098-IPD-030, -050, -075, -100, -150, -HVO3O, -HV050, -HV100, -HV150	MP-Series and 1326AB-Bxxxx-M2L or -S2L Motor Power Cable, non flex, 16 AWG, straight	2090-UXNPBMP-16Sxx
2098-IPD-075	H and F-Series Motor Power Cable, non-flex, 10 AWG, right angle	2090-UXNPAHF-10Rxx
	H and F-Series Motor Power Cable, non flex, 10 AWG, straight	2090-UXNPAHF-10Sxx
	MP-Series Motor Power Cable, non flex, 10 AWG, straight	2090-UXNPAMP-10Sxx
$\begin{aligned} & \text { 2098-IPD-075, -100, -150, -220, -HV100, } \\ & \text {-HV150-HV220 } \end{aligned}$	MP-Series and 1326AB-Bxxxx-M2L or -S2L Motor Power Cable, non flex, 8 AWG, straight	2090-UXNPBMP-10S $x x$
2098-IPD-075, -100, -150, -HV100, -HV150	MP-Series Motor Power Cable, non flex, 8 AWG, straight	2090-UXNPBMP-14Sxx
2098-IPD-150, --220, HV150, -HV220	MP-Series Motor Power Cable, non flex, 8 AWG, straight	2090-UXNPBMP-8Sxx
2098-IPD-150, -HV150	H-Series Motor Power Cable, non-flex, 6 AWG, right angle	2090-UXNPAH-6Rxx
	H-Series Motor Power Cable, non-flex, 6 AWG, straight	2090-UXNPAH-6Sxx
	H-8xxx Motor Power Cable, non-flex, 6 AWG, straight	2090-UXNPAHF-6Sxx
	H and F-Series Motor Power Cable, non-flex, 8 AWG, right angle	2090-UXNPAHF-8Rxx
	H and F-Series Motor Power Cable, non-flex, 8 AWG, straight	2090-UXNPAHF-8Sxx

Motor Feedback Cables

Applicable Drive(s)	Description	Catalog Number
All 2098-IPD-xxx and -HVxxx	H, F and W-Series Motor Feedback Cable, non-flex, connector at both ends, right angle, skewed	2090-UXNFBHF-Kxx
	H, F and W-Series Motor Feedback Cable, non-flex, connector at both ends, right angle	2090-UXNFBHF-Rxx
	H, F and W-Series Motor Feedback Cable, non-flex, connector at both ends, straight	2090-UXNFBHF-Sxx
	H-Series Motor Feedback Cable, non-flex, connector at both ends, right angle	2090-UXNFBH-Rxx
	1326AB-Bxxxx-M2L or -S2L Motor Feedback Cable, non-flex, connector at both ends, straight	2090-UXNFBMP-Sxx
	MP-Series Motor Feedback Cable, non-flex, connector at both ends, straight	2090-UXNFBMP-Sxx
	N-Series Motor Feedback Cable, non-flex, connector at both ends, right angle, skewed	2090-UXNFBN23-Kxx
	N-Series Motor Feedback Cable, non-flex, connector at both ends, right angle, skewed	2090-UXNFBN-Kxx
	N-Series Motor Feedback Cable, non-flex, connector at both ends, right angle	2090-UXNFBN-Rxx
	N-Series Motor Feedback Cable, non-flex, connector at both ends, straight	2090-UXNFBN-Sxx
	Y-Series Motor Feedback Cable, non-flex, connector at both ends, straight	2090-UXNFBY-Sxx
	H, F and W-Series Motor Feedback Cable, non-flex, motor connector to flying leads, straight	2090-UXNFDHF-Sxx
	H, F and W-Series Motor Feedback Cable, non-flex, motor connector to flying leads, right angle	2090-UXNFDH-Rxx
	1326AB-Bxxxx-M2L or -S2L Motor Feedback Cable, non-flex, motor connector to flying leads, straight	2090-UXNFDMP-Sxx
	MP-Series Motor Feedback Cable, non-flex, motor connector to flying leads, straight	2090-UXNFDMP-Sxx
	N-Series Motor Feedback Cable, non-flex, motor connector to flying leads, right angle, skewed	2090-UXNFDN23-Kxx
	N-Series Motor Feedback Cable, non-flex, motor connector to flying leads, right angle	2090-UXNFDN-Rxx
	N-Series Motor Feedback Cable, non-flex, motor feedback connector to flying leads, straight	2090-UXNFDN-Sxx
	Y-Series Motor Feedback Cable, non-flex, motor feedback connector to flying leads, straight	2090-UXNFDY-Sxx
	Drive Feedback Cable, non-flex, CN2 connector to flying leads, straight	2090-UXNFM-Sxx

MP-Series Motor Brake Cable

Description	Catalog Number
MP-Series and 1326AB-Bxxxx-M2L or -S2L motor brake cable, $0.75 \mathrm{~mm}^{2}(18 \mathrm{AWG})$	2090-UXNBMP-18Sxx

Ultra5000 Interface Cables

Description	Catalog Number
Interface cable, PanelView to Ultra5000	2090-U5PV-D09xx
Serial Interface Cable, 9-pin D-shell, CN3 to personal computer.	2090-UXPC-D09 $x x$

Break Out Boards, Cables, and Kits

Use the following table to identify your break out board components.

Description	Catalog Number
Panel mount Break Out Board, 15-pin, high density D-shell, CN2	2090-UXBB-D15
Break Out Board Cable, 15-pin, high density D-shell, CN2. Length of cable $x x$ is in meters (01, 03, 09 and 15).	2090-UXBC-D15xx
Break Out Board Kit. Contains CN2 break out board and cable of length $x x$.	2090-UXBK-D15xx
Drive mounted Break Out Board for 15-pin CN2 connector.	2090-UXBB-DM15
Drive mounted Break Out Board for 9-pin CN3A and CN3B connectors.	2090-UXBB-DM09

Mating Connector Kits

The Ultra5000 has two serial connectors, one motor feedback connector, two I/O connectors, and one terminal block for power connections. Use the following table to identify the mating connector kits for your Ultra5000. Refer to the chapter Ultra5000 Connector Information beginning on page 2-1 for pin, signal, and wiring information.

Description	Catalog Number
Mating Connector Kit (9-pin D-shell)	2090-UXCK-D09
Mating Connector Kit (15-pin high density D-shell)	2090-UXCK-D15
Mating Connector Kit (Terminal Block)	2090-UXCK-TB

The following table lists mating connectors that are not available from Rockwell Automation. Please contact Amp at 1-800-522-6752 or a distributor for additional information.

Connector Components	CN2 Motor Feedback 15-Pin High-Density D-Shell	CN3 Serial 9-Pin Standard-Density D-Shell
Mating Connector	$748364-1$	$205204-4$
Crimp Pin Contacts	$748333-4^{1}$	$5-66506-7^{2}$
Unshielded Backshell Kit $^{\text {1 }} 748678-1$	$748678-1$	
Shielded Backshell Kit $^{\text {Ferrules }}{ }^{3}$	$745171-5$	$745171-5$

[^10]
Wiring Three Phase Power to a Single Phase Ultra5000

Objectives

This appendix discusses connecting single phase Ultra5000 drives to a star (Y) connected three phase power source. The three main aspects of installation are:

- Mandatory Neutral Connection of Isolation Transformer
- Three Phase Line Filtering Requirements for EMC
- Voiding of CE Compliance

The three phase isolation transformer and neutral in line filter applications described in this document have not been tested for EMC by Rockwell Automation, and products used in such installations are not considered CE marked by Rockwell Automation.

If this three phase isolation transformer and neutral in line filter application is used, the responsibility for EMC validation lies with the user and CE marking of the system becomes the user's responsibility.
If CE compliance is a customer requirement, single phase line filters which have been tested by Rockwell and specified for the product should be used. Refer to AC Line Filters on page C-3.

Applicable Drives

Mandatory Neutral Connection of Isolation Transformer

A neutral must be connected (shown in the upper diagram of Figure D.1) when single phase drives are attached to a three phase isolating transformer secondary. It is not necessary that all three phases be loaded with drives, but each drive must have its power return via the neutral connection.

Failure to connect the neutral (shown in the lower diagram of Figure D.1) can result in supply voltage swings at the individual loads (i.e., drives). This occurs when the neutral point moves vectorially as a result of load variations normally experienced by the individual drives. The supply voltage swing may cause undervoltage and overvoltage trips on the drives, and the drive can be damaged if the overvoltage limit is exceeded.

Figure D. 1
Mandatory Neutral Connection with Safety Ground of Isolation Transformer

Any unbalance in load currents will result in unbalanced voltages which could exceed the voltage limit of the load.

Adding a Safety Ground to the Isolation Transformer

Provided that the transformer used is an isolating transformer, it is a good idea to fit a safety ground to the neutral connection. This will do two things:

1. Prevent the system floating, and thereby avoid any high voltages that might otherwise occur (e.g., through static), and
2. Provides a solid earth path for fault conditions.

ATTENTION

If the supply transformer is an auto transformer, a safety earth ground should not be added.
A safety earth ground should already be fitted elsewhere in the system, and fitting another would create a bolted short.

Three Phase Line Filtering Requirements for EMC

If a three phase line filter is used, it is important that the filter include a neutral connection as shown in Figure D.2. This applies if three phase is brought directly into the filter (i.e., no isolating transformer present). The reasons are as follows:

- The normal components in filters of this kind are inductance and capacitance.
- The inductive elements are normally toroids which are placed around the three phases of the device. The neutral will carry return currents due to the unbalanced nature of the loads so it is vital that the neutral return is included in the toroidal inductors.
(Note: Toroidal inductors are sometimes referred to as common mode chokes, or ferrite cores.) If the neutral is not included, the net power current through the choke (Kirchoff's Laws) will not be zero which causes the chokes to saturate with a reduction in filtering performance.
- Filters with this design requirement are available (e.g. Schaffner FN 256 three phase and neutral filter). It is important to ensure that the three phase current rating of the filter adequately covers the application requirements.

Figure D. 2
Mandatory Neutral Connection of Three Phase Line Filter

Three phase EMC filter feeding multiple single phase loads A three phase and neutral filter is required

Voiding of CE Compliance

The three phase and neutral in line filter applications described above may not be adequate from an EMC aspect for CE compliance. Therefore EMC validity and CE marking by Rockwell Automation is voided when three phase and neutral in line filters are used.

ATTENTION

The three phase isolation transformer and neutral in line filter applications described in this document have not been tested for EMC by Rockwell Automation, and products used in such installations are not considered CE marked by Rockwell Automation..

If this three phase isolation transformer and neutral in line filter application is used, the responsibility for EMC validation lies with the user and CE marking of the system becomes the user's responsibility.
If CE compliance is a customer requirement, single phase line filters which have been tested by Rockwell and specified for the product should be used. Refer to AC Line Filters on page C-3.

460 V drive
230V input implications 3-14

A

AC
Input current $\mathrm{A}-3$
input current A-1, A-2
power 3-14
address
logically assigned 5-8
physically assigned 5-8
addressing DeviceNet 3-12
Allen-Bradley support
IMC e-mail addresses, see back cover
IMC fax numbers, see back cover
IMC telephone numbers, see back cover
local product P-5
technical product assistance P-5
altitude A-4
analog inputs 2-23
analog outputs 2-24
assigning DeviceNet address 3-12
auxiliary encoder
feedback 2-32
auxiliary encoder error, see troubleshooting

B

baud rate 2-34
block diagram
Ultra5000 functions 2-2
bonding
subpanels 1-11
brake cables, MP-series C-8
break out boards
drive mounted C-8
building your own cables 3-4
bus
overvoltage 5-4
undervoltage 5-3
bus-off
LED red 5-8

C

cables
break out board cable C-8 building your own cables 3-4
drive and motor combinations B-1
interface cables C-8
motor feedback cables C-7
motor power C-6
MP-series brake cables C-8
to 1326 AB motor $\mathrm{B}-3, \mathrm{~B}-5$
to H / F-series motor $\mathrm{B}-9$
to N -series motor $\mathrm{B}-7$
to W-series motor $\mathrm{B}-11$
to Y-series motor B-13
catalog numbers $\mathrm{C}-1$
AC line filters C-3
break out boards C-8
break out cables C-8
break out kits C-8
external shunt kit C-4
interface cables C-8
mating connector kits C-9
motor feedback cables C-7
motor power cables C-6
MP-series brake cables C-8
Ultra5000 drives C-2
Ultraware software C-2
CE
compliance 1-1
determining product
compliance 1-1
EMC directive 1-2
emergency stop contactor B-20
filter requirements $\mathrm{B}-22$
grounding requirements $\mathrm{B}-22$
invalidating compliance $\mathrm{D}-1$
low voltage directive $1-2$
meeting requirements 1-2
motor cable grounding 3-15
commissioning your Ultra5000
4-1
applying power 4-3
communication address switches setting 4-3
communication fault
DeviceNet 5-4
complying with CE 1-1
directives 1-2
product compliance 1-1
configuring
drive detection 4-5
drive with DeviceNet 3-12
firmware upgrade 4-5
HV drive for 230 V motor input power 3-14
Ultra5000 4-5
Ultraware software 4-5
connecting your Ultra5000 2-1, 3-1
connector
block diagram 2-2
front panel connectors 2-3
mating connectors C-9
contents of manual P-2
conventions used P-4
cumulative drop length 5-10

D

data rate 3-10
rotary switch 3-13
DeviceNet
cable 3-11
configuration 3-12
connector 2-14, 3-11
network 3-10
DeviceNet addressing 3-12
digital I/O
external power supply 2-19, 3-1
not working 5-3
digital inputs $2-20$
digital outputs, hardware
configuration 2-22
dimensions
2098-IPD-005 A-9
2098-IPD-005-DN A-9
2098-IPD-010 A-10
2098-IPD-010-DN A-10
2098-IPD-020 A-10
2098-IPD-020-DN A-10
2098-IPD-030 A-11
2098-IPD-030-DN A-11
2098-IPD-075 A-12
2098-IPD-075-DN A-12
2098-IPD-150 A-13
2098-IPD-150-DN A-13
2098-IPD-HV030 A-14
2098-IPD-HV030-DN A-14
2098-IPD-HV050 A-14

2098-IPD-HV050-DN A-14
2098-IPD-HV100 A-15
2098-IPD-HV100-DN A-15
2098-IPD-HV150 A-15
2098-IPD-HV150-DN A-15
2098-IPD-HV220 A-16
2098-IPD-HV220-DN A-16
documentation
on-line and print $\mathrm{P}-3$
drop length design 5-10

E

efficiency, network 5-10
electrical noise 5-8, 5-9, 5-10
designing to control $\mathrm{P}-3$
EMC
cable shield (bottom of drive) 3-8
designing for $\mathrm{P}-3$
motor ground termination
F, H, MP, N, and W-series
motors 3-7
Y-series motors 3-8
EMC directive 1-2
emergency stop contactor B-20
EMI
bonding to reduce noise 1-10
designing to control $\mathrm{P}-3$
enclosure sizing A-5
encoder
connector (CN2) pinout 2-6
specifications
AM, BM, and IM inputs 2-25
auxiliary signal 2-32
connections 2-31
feedback 2-25, 2-32
Hall inputs 2-27
limit inputs 2-28
phasing 2-29
unbuffered output 2-31
encoder output frequency exceeded 5-5
error codes and messages 5-2
E-stop wiring B-21
European Low Voltage Directive compliance 2-19
effect on digital I/O power 2-19
excess cpu load 5-6
excess position error 5-4
excess velocity error 5-5
external devices
digital I/O power supply 2-19,
3-1
shunt kit C-4

F

filter, AC power $\mathrm{B}-22$
firmware upgrade 4-5
front panel connections 2-3
2098-IPD-005, -010 and -020 2-4
2098-IPD-005-DN, -010-DN, and -020-DN 2-13
2098-IPD-030 2-8
2098-IPD-030-DN, -075-DN, and -150-DN 2-15
2098-IPD-075, and -150 2-10
2098-IPD-HV030-xx,
-HV050-xx, -HV100-xx, -HV150-xx, and -HV220-xx 2-16
DeviceNet 2-13
fuse sizing 1-9
auxiliary input 1-9
mains input 1-9

G

grounding
cable shield (bottom of drive) 3-8
CE requirements B-22
multiple subpanels 3-7
system to subpanel 3-6

H

heat losses for sizing enclosures A-5
high frequency energy 1-11
humidity A-4
HV drive
implications of 230 V input 3-14

I/O
analog inputs 2-23
analog outputs 2-24
digital inputs $2-20$
digital outputs 2-22
external power supply 2-19, 3-1
internal power supply 2-19
I/O connector
Ultra5000 2-5
illegal hall state 5-4
input power
230 V to 460 V drive A-3
installation
emergency stop contactor B-20
interconnect diagrams
drive and motor cable combinations B-1
shunt module 2090 Series for HV drives B-24 300W B-23
shunt module 200W B-23
shunt module 900 W B-24
to 1326 AB motor $\mathrm{B}-3$, B-5
to H / F-series motor B-9
to N-series motor B-7
to W-series motor B-11
to Y-series motor B-13
interface cables C-8
intermittent power 5-8
IPM fault, see troubleshooting
IPM thermal protection fault, see troubleshooting

L

LED
logic power 4-4
module status (DeviceNet) 5-6
network status (DeviceNet) 5-7
status 4-4
status check 5-8
line filters C-3, D-3
logic power LED 4-4, 5-2
low voltage directive 1-2
M
MAC ID 5-8
maintaining your Ultra5000 5-1
maintenance
cleaning 5-1
inspecting cables 5-2
periodic 5-1
troubleshooting 5-2
mating connectors C-9
module status LED 5-6
motor
overload protection B-20
motor encoder
error 5-4
motor encoder connector 2-6
motor encoder specifications
AM, BM, and IM inputs 2-25
auxiliary encoder 2-32
connections 2-31
encoder phasing 2-29
Hall inputs 2-27
limit inputs 2-28
unbuffered output 2-31
motor feedback cables $\mathrm{C}-7$
motor jumps when enabled 5-3
motor overtemperature 5-3
motor power cables C-6
motor specifications
thermostat input 2-27
motor thermal protection fault 5-5
motor thermostat 2-27
mounting
before mounting 1-3
bonding 1-10
procedure 1-12
system requirements $1-5$
MSD and LSD
rotary switch 3-13
N
network
cable system 3-10
data rate 3-10
network status LED 5-8
network status LED (DeviceNet)
5-7
network, efficiency 5-10
noise
designing to control $\mathrm{P}-3$
see bonding 1-10
number of nodes 5-10

0

option cards 2-2
Output Current

Continuous (peak) A-3
output current
continuous (peak) A-1, A-2
peak A-1
overload protection 3-14
overspeed fault 5-4

pin-outs

DeviceNet connector 2-14
I/O connectors
CN1A 2-5
CN1B 2-5
motor encoder connector 2-6
serial connector 2-7
terminal block 3-17
power
applying power 4-3
losses A-5
Output Continuous A-3
output continuous A-1, A-2
power (PWR) indicator not on 5-2
power dissipation A-5
precautions
general startup 4-1
protection circuitry
motor overload B-20
purpose of this manual $\mathrm{P}-1$
R
reference material
AC line filters C-3
breakout boards, cables and kits C-8
connector kits C-9
drive catalog numbers $\mathrm{C}-2$
interface cables C-8
motor feedback cables C-7
motor power cables C-6
MP-series brake cables C-8
shunt resistor C-4
Ultraware software C-2
related documentation
300W active shunt installation P-3
460 V Ultra 5000 shunt installation P-3
900W passive shunt installation P-3
control of electrical noise P-3
DeviceNet cable system planning and installation manual P-3, 3-10
on-line and printed documentation P-3
Ultra5000 C programming manual P-3
Ultra5000 DeviceNet reference manual P-3
Ultraware CD installation P-3
Ultraware user manual P-3
rotary switch
data rate 3-13
MSD and LSD 3-13
RS-232 2-34
RS-422 2-34
RS-485 2-34

S

safety ground B-21, D-2
scanner
faulty 5-9
grounding 5-9
troubleshooting 5-9
self-sensing commutation 5-6
serial connector 2-7
serial interface specifications
2-34
default serial interface settings 2-34
serial port 2-34
setting
address 5-8
baud rate 5-8
data rate 3-13
node address 3-13
shock A-4
shunt resistor
interconnect diagram
200W B-23
2090 Series for HV drives
B-24
300W B-23
900W B-24
shunt resistor kits C-4
specifications A-1
AC Input current A-2, A-3
AC input current A-1
altitude A-4
auxiliary feedback A-8
connectors A-8
control A-6
DeviceNet communications
A-7
digital I/O power supply 2-19, 3-1
general power A-1
2098-IPD-005-xx, -010-xx, and -020-xx A-1
2098-IPD-030-xx, -075-xx, and -150-xx A-2
2098-IPD-HV030-xx, -HV050-xx, -HV100-xx, -HV150-xx, and
-HV220-xx A-3
humidity A-4
HV drive with 230 V input power A-3
I/O 2-19
I/O digital outputs 2-22
inputs and outputs A-7
motor encoder feedback 2-25
motor feedback A-8
Output Current Continuous
(peak) A-3
output current continuous (peak) A-1, A-2
peak output current A-1
physical and environmental A-4
power dissipation A-5
Power Output Continuous A-3
power output continuous A-1, A-2
serial communications A-7
shock A-4
storage temperature A-4
user programming A-6
vibration A-4
start-up procedure 3-1, 4-1
status LEDs 4-4, 5-2
storage
before installation 1-3
responsibility $\mathrm{P}-4$
temperature A-4
system mounting requirements auxiliary input fuse sizing 1-9
fuse sizing 1-9
general 1-5
mains input fuse sizing 1-9
minimum clearances 1-6
preparation 1-3
spacing 1-5
transformer sizing 1-7
ventilation 1-6
T
tee tap 5-8
terminal block
connections 3-18
2098-IPD-005-xx, -010-xx, and -020-xx 2-7
2098-IPD-030-xx 2-9
2098-IPD-075, and -150
2-11
2098-IPD-HV030-xx, -HV050-xx, -HV100-xx, -HV150-xx, and -HV220-xx 2-17
shunt resistor 3-19
torque values 3-14, 3-18
wiring 3-14, 3-18
pin-outs 3-17
thermostat 2-27
three phase and neutral D-3
torque values 3-18
transformer
sizing 1-7
three phase isolation D-2
troubleshooting 5-2
cable installation and design 5-10
device failure 5-8
DeviceNet
module status LED 5-6
network status LED 5-7
error codes 5-2
general
auxiliary encoder error
5-5
bus undervoltage 5-3, 5-4
DeviceNet
communication fault 5-4
digital I/O not working
5-3
encoder output
frequency exceeded 5-5
excess cpu load 5-6
excess position error 5-4
excess velocity error 5-5
illegal hall state 5-4
IPM fault 5-3
IPM thermal protection
fault 5-5
motor encoder error 5-4
motor jumps when
enabled 5-3
motor overtemperature
5-3
motor thermal protection
fault 5-5
overspeed fault 5-4
power (PWR) indicator
not on 5-2
self-sensing commutation 5-6
user-specified current
fault 5-4
user-specified velocity fault 5-5
grounding 5-8
node address problems 5-8
physical network configuration 5-10
power supply 5-9
power supply problems 5-9
scanner problems 5-9
trunk length 5-10
trunk wiring 5-9
U
Ultraware
software 4-5, C-2
user manual 4-5
unpacking modules 1-4
user-specified current fault 5-4
user-specified velocity fault 5-5
V
vibration A-4

w
wire gauge
DeviceNet 3-10
I/O connector 2-5
subpanel bonding 1-11
wiring 3-4
building your own cables 3-4
CE ground clamp 3-15
connecting cable shield 3-18
connecting DeviceNet to a
network 3-10
connecting I/F cables 3-9
connecting your DeviceNet
cable 3-11
grounding 3-6
I/O Connections 3-9

input power 3-15
power connections 3-14
power wiring diagram
2098-IPD-005, -010, -020
B-15
2098-IPD-030-xx B-16
2098-IPD-075-xx B-17
2098-IPD-150-xx B-18
2098-IPD-HVxxx-xx B-19
requirements 3-4
routing high/low voltage cables 3-5
shunt resistor 3-19
terminal block connections
3-14, 3-18

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: ${ }^{1}$ Do not connect an external I/O power supply to the DC bus. The DC+ and DC- terminals connect directly to the power bus of the drive.
 ${ }^{2}$ Ensure motor power is wired with proper phasing relative to the motor terminals. On some motors, the motor leads may be labeled R, S, and T which correspond to U, V, and W .

[^1]: ${ }^{1}$ A jumper, selecting the internal shunt, is factory installed between terminals 1 and 2. Remove the jumper for
 applications reguiring an external shunt.
 Refer to External shunt kits on page c^{-4} for information about available external shunt kits.

[^2]: ${ }^{1}$ Do not connect an external I/O power supply to the DC bus. The DC+ and DC- terminals connect directly to the power bus of the drive.
 ${ }^{2}$ Ensure motor power is wired with proper phasing relative to the motor terminals. On some motors, the motor leads may be labeled R, S, and T which correspond to U, V, and W.

 3 The auxiliary AC power inputs require dual element time delay (slow acting) fuses to accommodate inrush current. Refer to the section General Power Specifications in Appendix \underline{A} for the inrush current on the auxiliary AC power input.

[^3]: ${ }^{1}$ A jumper, selecting the internal shunt, is factory installed between terminals 1 and 2. Remove the jumper for applications requiring an external shunt.
 Refer to External Shunt Kits on page C-4 for information about available external shunt kits.

[^4]: ${ }^{1}$ A jumper, selecting the internal shunt, is factory installed between terminals 1 and 2. Remove the jumper for applications requiring an external shunt.
 Refer to External Shunt Kits on page C-4 for information about available external shunt kits.

[^5]: Use the Data Rate rotary switch on the DeviceNet panel of the drive to set the data rate.

[^6]: ${ }^{1}$ The input power may be optionally isolated through a transformer.

[^7]: ${ }^{1}$ Do not connect an external I／O power supply to the DC bus．The DC＋and DC－terminals connect directly to the power bus of the drive．
 ${ }^{2}$ Ensure motor power is wired with proper phasing relative to the motor terminals．On some motors，the motor leads may be labeled R，S，and T which correspond to U，V，and W．

 3 The auxiliary AC power inputs require dual element time delay（slow acting）fuses to accommodate inrush current．Refer to the section General Power Specifications in Appendix \underline{A} for the inrush current on the auxiliary AC power input．

[^8]: ${ }^{1}$ This is the factory default jumper setting for TB2.

[^9]: 1 Specification is for nominal voltage. The absolute limits are $\pm 10 \%$, or $88-265 \mathrm{~V}$ rms.
 2 The 2098-030-xx, -075-xx, and -150-xx (230V) drives are limited to two contactor cycles per minute.
 ${ }^{3} 400 \mu$ s half wave sine, inrush current is processor controlled via soft start circuitry.

[^10]: ${ }^{1}$ Accepts 22-28 AWG wire.
 ${ }^{2}$ Accepts 20-24 AWG wire.
 ${ }^{3}$ Ferrules are only required for use with shielded backshell kits.

